• 제목/요약/키워드: Human Thigh Model

검색결과 15건 처리시간 0.021초

A study on procedure for classifying male muscular lower body somatotype from general anthropometric database

  • Lee, Minji;Chun, Jongsuk
    • 복식문화연구
    • /
    • 제21권4호
    • /
    • pp.585-595
    • /
    • 2013
  • The most researches developing pattern of compression style sportswear were targeted at the live model that has muscular body build. The purpose of this study was developing a method for classifying men's lower body types in terms of muscular body build. The 3D human body scan data and body measurements of 30s of Size Korea were analyzed. The subjects (n=203) were men between the ages of 30 and 39 years. Men's muscular body build was classified with two key dimensions, thigh girth and calf girth. The subjects were divided into four groups. From each group, average subjects (n=42) whose height and weight were close to the mean value ($mean{\pm}1/2$ S.D.) were selected. 42 subjects were divided up as four groups. Group I (n=7) was thigh and calf developed body type. Group II (n=9) was thigh developed body type. Group III (n=11) was calf developed body type. Group IV (n=15) was thigh and calf undeveloped body type. Four groups had distinct different at widths (n=4), depths (n=4), and girths (n=9) dimensions. The results showed that the muscular men in their 30s could be defined by thigh and calf girths. The thigh developed muscular men had thigh girth over 60cm and the calf developed muscular men had calf girth over 38cm. From each group one representative was selected by 3D body scan figure.

A Statistical Model for Marker Position in Biomechanics

  • Kim, Jinuk
    • 한국운동역학회지
    • /
    • 제27권1호
    • /
    • pp.67-74
    • /
    • 2017
  • Objective: The purpose of this study was to apply a general linear model in statistics to marker position vectors used to study human joint rotational motion in biomechanics. Method: For this purpose, a linear model that represents the effect of the center of hip joint rotation and the rotation of the marker position on the response was formulated. Five male subjects performed hip joint functional motions, and the positions of nine markers attached on the thigh with respect to the pelvic coordinate system were acquired at the same time. With the nine marker positions, the center of hip joint rotation and marker positions on the thigh were estimated as parameters in the general linear model. Results: After examining the fitted model, this model did not fit the data appropriately. Conclusion: A refined model is required to take into account specific characteristics of longitudinal data and other covariates such as soft tissue artefacts.

보행 중 인체 슬관절의 3차원 접촉 모델 개발 (Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion)

  • 김효신;박성진;문정환
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

대퇴부 모델에서의 초음파 압력분포에 관한 유한요소 해석 (Finite Element Analysis of Pressure Distribution by Ultrasound in Human Thigh Model)

  • 최호선
    • 정보학연구
    • /
    • 제8권1호
    • /
    • pp.43-50
    • /
    • 2005
  • Quantitative analysis for distribution of penetrating ultrasound in vivo is very important to determine the treatment region and method. In this paper, we constructed a simplified 2-D femoral region model that consists of skin-fat-muscle-bone layered system, and simulated the pressure distribution in the model in case of applying ultrasound using Finite Element Method(FEM). The ultrasound used in the simulation was assumed to be pulse wave and the pressure distribution was analyzed during only one period of pulse wave. In order to find the penetration depth, amplitude of pressure and sphere that ultrasound reaches in the model, we performed the simulation with varying the applied frequency, transducer size and amplitude of transducer's output. The result showed that applied frequency is inversely proportional to the penetration depth and amplitude of pressure but the amplitude of transducer's output is proportional to the amplitude of pressure in the model. Also, the sphere that ultrasound reaches was widened and the amplitude of pressure became larger as the transducer size became larger. This results were similar to that obtained from the previous model consisting of fat-muscle-bone layered system, but we observed that the pressure of ultrasound is decreased due to the decrements of pressure by the absorption coefficient of skin and the interference that depends on the reflection of ultrasound caused by the difference of acoustic impedance of skin and fat. Finally, we can infer that the model proposed in this study is closer to the realistic model than the previous ones. It shows that the results obtained from this study can be useful in designing the ultrasound treatment instrument or in setting up the treatment plan.

  • PDF

투습방수의류의 착용쾌적성 평가 (Assessment of Wear Comfort of Water-vapor-permeable (WVP) garments)

  • 강인형;박효숙;이한섭
    • 한국의류학회지
    • /
    • 제36권9호
    • /
    • pp.928-939
    • /
    • 2012
  • This study evaluates wear comforts of water-vapor-permeable (WVP) garments through a measurement of various parameters such as skin and rectal temperatures, microclimate between skin and clothing, sweat rate, and subjective sensations (thermal, wet and comfort sensations) to correlate the physiological responses of the human body with its comfort feeling. Wear comfort during a specific exercise on a treadmill in a climatic chamber (temperature T = $20{\pm}0.5^{\circ}C$ and relative humidity H = $50{\pm}10%$) were studied using eight men wearing seven sportswear outfits (a long sleeve shirts and a long pants) made with seven different WVP fabrics. A comfort sensation was found to be highly correlated with skin T (p<.001), microclimate (T and H) between skin and clothing (p<.001) and sweat rate (p<.05). A regression model correlating comfort sensations and physiological responses obtained from wearer trials could be established: Y = 14.167 - 0.362 ${\times}$ X1 + 0.424 ${\times}$ X2 - 0.238 ${\times}$ X3 - 0.561 ${\times}$ X4 + 0.253 ${\times}$ X5 + 0.214 ${\times}$ X6 - 0.393 ${\times}$ X7 + 0.023 ${\times}$ X8 - 0.043 ${\times}$ X9. (Y = comfort sensation, X1 = forehead skin T, X2 = forearm skin T, X3 = hand skin T, X4 = thigh skin T, X5 = T of chest microclimate, X6 = T of thigh microclimate, X7 = chest sweat rate, X8 = H of back microclimate, X9 = H of thigh microclimate. The regression model obtained in this work can be used by manufacturers to objectively estimate the comfort sensation of sportswear before it is introduced to the consumer market. This study provides salient information to sportswear manufacturers and sportswear consumers.

역기구학을 이용한 보행 분석 (Analysis of human gait using inverse kinematics)

  • 최경암;정민근;염영일
    • 대한인간공학회지
    • /
    • 제13권1호
    • /
    • pp.3-14
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis is based on a gait model consisting of a torso and two legs. Each let has three segments: thigh, shank, foot, and has six degrees-of-freedom. In order to synthesize trajectories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. Hpwever, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified.

  • PDF

역기구학을 이용한 보행분석

  • 최경임;정민근;염영일
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1994년도 춘계학술대회논문집
    • /
    • pp.136-144
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis based on a lower extremity model consisting of a torso and two legs. Each leg has three segments: thigh, shank, foot, and is assumed to move with six degrees-of-freedom. In order to synthesize trajectiories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. However, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified. The predicted joint trajectories showed a good agreement with those obtained from the experiment. The statistical analysis and graphic simula- tions are also presented.

  • PDF

수입 의료용 압박스타킹의 압력 측정치 비교 (The Comparison on the Compression Measurement Value of Medical Compression Stockings)

  • 도월희;김남순
    • 한국의류학회지
    • /
    • 제37권8호
    • /
    • pp.1060-1074
    • /
    • 2013
  • This study measured and analyzed pressure at each measurement part of imported compression stockings sold in Korea to provide basic information to establish a pressure standard and grade ranking. This study used 40 medical compression stockings imported from 6 countries. Pressure measurements were taken at 11 points: front side and back side of ankle, end-point of the gastrocnemius muscle, front, inner side, back, and outer side of calf, back side of below knew girth, inner side, and outer side of mid-thigh girth, and inner side of thigh girth. AMI 3037-10 and AMI 3037-2 were used for measurements taken inside an environmental chamber at a temperature of $21^{\circ}C$ and a relative humidity (RH) of 65%. For the measurements, 11 air pack sensors were attached to a wooden model leg (Hohenstein) and three measurements were taken at each measurement point in three minutes. The average of these measurements was used for analysis. The findings of this study were as follows. As for the front side of the ankle, of the 40 products, 14 products (6 USA, 2 Swiss, 3 Italian, and 2 Taiwanese) were within the pressure range indicated on the product label; however, no German products fell within the pressure range. A total of 8 products (5 USA, 1 Swiss, 1 Italian, and 1 German) were gradient compression type; however, no Japanese or Taiwanese product were of this type. The majority of products had the highest pressure at the end-point of the gastrocnemius muscle. Only 3 products, 1 USA (Jobst Opaque 30-40mmHg), 1 Swiss (Sigvaris Cotton 34-46mmHg) and 1 Italian (Jobstocking 25-32mmHg), had measurements that met the indicated standard pressure, were a gradient compression type, and met the overall standard for compression stockings.

휴머노이드 로봇 모델을 이용한 보행재활 훈련장치의 견인모터 속도 파형 생성 (Generation of Motor Velocity Profile for Walking-Assistance System Using Humanoid Robot Model)

  • 최영림;최낙윤;박상일;김종욱
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.631-638
    • /
    • 2012
  • 본 논문은 슬관절 손상 환자의 하지근력 강화 재활훈련 장치에서 다리를 끌어주는 견인모터의 속도 프로파일을 휴머노이드 로봇 시뮬레이션을 통해 계산하는 방법을 새롭게 제안한다. 먼저 인체의 구조를 본 딴 휴머노이드 로봇의 3차원 전신 모델을 새롭게 구축하고, 표준 관절각도 데이터를 이 모델에 적용하여 자연스러운 보행을 시뮬레이션 했다. 그리고 하지의 대퇴부에 부착되어 있는 벨트와 견인모터와의 거리를 매 샘플링 타임에서 계산하여 이로부터 속도 프로파일을 도출하는 방식으로 보행 중 속도 파형을 생성한다. 휴머노이드 로봇의 기구학적 방법으로는 직진 보행에서 계산량이 적은 투영법을 사용했으며, 유각기의 관절 각도 프로파일은 Winter의 표준보행 데이터를 참조했다. 본 논문에서 제안한 방법으로 계산된 인체 특정부위 속도 프로파일은 제작 중인 트레드밀 재활훈련 장치에 적용될 예정이다.

인터넷 의류 판매 사이트의 가상피팅모델 구축을 위한 입력정보 종류와 결과 비교 (Study on input data for developing virtual fitting model at internet apparel shopping sites and comparison of the results)

  • 천종숙;최현영
    • 감성과학
    • /
    • 제5권4호
    • /
    • pp.1-10
    • /
    • 2002
  • 개인별 신체 특성을 나타내는 가상피팅모델을 이용하여 제공되는 가상 착용 서비스는 웹을 기반으로 한 인터넷 의류 쇼핑의 흥미를 더해준다. 본 연구의 연구자들은 2000년과 2002년에 개발된 미국의 가상피팅모델과 국내에서 개발되었던 가상피팅모델의 개발 기술의 특성과 변화를 분석하였다. 연구결과는 가상피팅모델의 구축을 위해서는 인체의 치수, 형태, 얼굴의 특징들에 관한 정보 입력이 필요하며, 이때 요구되는 정보는 미국과 한국의 사이트에서 차이가 있음을 밝혔다. 미국의 사이트는 정면이나 측면의 실루엣에 대한 정보의 입력이 요구되는 반면 한국의 사이트는 더 많은 인체 치수 관련 정보를 요구하였다. 2000년에 개발되었던 한국의 가상피팅모델은 길고 좁은 프로포션으로 표현되어 사실적인 표현이 부족하였던 반면 2002년 미국에서 개발한 가상피팅모델은 다양한 인종의 특성을 반영하며, 그래픽 기술의 발전으로 사실적으로 표현된 가상피팅모델을 제공하는 것으로 나타났다.

  • PDF