• Title/Summary/Keyword: Human Neurons

Search Result 151, Processing Time 0.028 seconds

Alpha-Synuclein Inclusion Formation in Human Oligodendrocytes

  • Yoon, Ye-Seul;Ahn, Woo Jung;Ricarte, Diadem;Ortiz, Darlene;Shin, Chan Young;Lee, Seung-Jae;Lee, He-Jin
    • Biomolecules & Therapeutics
    • /
    • v.29 no.1
    • /
    • pp.83-89
    • /
    • 2021
  • Multiple system atrophy (MSA) is a neurodegenerative disease characterized by presence of α-synuclein-positive inclusions in the cytoplasm of oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are considered an integral part of the pathogenesis of MSA, leading to demyelination and neuronal demise. What is most puzzling in the research fields of GCIs is the origin of α-synuclein aggregates in GCIs, since adult oligodendrocytes do not express high levels of α-synuclein. The most recent leading hypothesis is that GCIs form via transfer and accumulation of α-synuclein from neurons to oligodendrocytes. However, studies regarding this subject are limited due to the absence of proper human cell models, to demonstrate the entry and accumulation of neuronal α-synuclein in human oligodendrocytes. Here, we generated mature human oligodendrocytes that can take up neuronderived α-synuclein and form GCI-like inclusions. Mature human oligodendrocytes are derived from neural stem cells via "oligosphere" formation and then into oligodendrocytes, treating the cells with the proper differentiation factors at each step. In the final cell preparations, oligodendrocytes consist of the majority population, while some astrocytes and unidentified stem cell-like cells were present as well. When these cells were exposed to α-synuclein proteins secreted from neuron-like human neuroblastoma cells, oligodendrocytes developed perinuclear inclusion bodies with α-synuclein immunoreactivity, resembling GCIs, while the stem cell-like cells showed α-synuclein-positive, scattered puncta in the cytoplasm. In conclusion, we have established a human oligodendrocyte model for the study of GCI formation, and the characterization and use of this model might pave the way for understanding the pathogenesis of MSA.

Neural and Cholinergic Differentiation of Mesenchymal Stem Cells Derived from the Human Umbilical Cord Blood (인간 제대혈액에서 유래된 중간엽 줄기세포의 신경 및 콜린성 분화)

  • Kam, Kyung-Yoon;Kang, Ji-Hye;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.235-243
    • /
    • 2007
  • Human umbilical cord blood(HUCB) contains a rich source of hematopoietic stem cells, mesenchymal stem cells and endothelial cell precursors. Mesenchymal stem cells(MSCs) in HUCB are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. We studied on transdifferentiation-promoting conditions in neural cells and cholinergic neuron induction of HUCB-derived MSCs. Neural differentiation was induced by addingdimethyl sulphoxide(DMSO) and butylated hydroxyanisole(BHA) in Dulbeco's Modified Essential Medium(DMEM) and fetal bovine serum(FBS). Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor(bFGF), retinoic acid(RA) and sonic hedgehog(Shh). MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including $\beta$-tubulin III, GFAP and MBP, was markedly elevated during this acute differentiation. The differentiation rate was about $32.3{\pm}2.9%$ for $\beta$-tubulin III-positive cells, $11.0{\pm}0.9%$ for GFAP, and $9.4{\pm}1.0%$ for Gal-C. HUCB-MSCs treated combinatorially with bFGF, RA and Shh were differentiated into cholinergic neurons. After cholinergic neuronal differentiation, the $\beta$-tubulin III-positive cell population of total cells was $31.3{\pm}3.2%$ and of differentiated neuronal population, $70.0{\pm}7.8%$ was ChAT-positive showing 3 folds higher in cholinergic population than neural induction. Conclusively, HUCB-derived MSCs can be differentiated into neural and cholinergic neurons and these findings suggest that HUCB are alternative cell source of treatment for neurodegenerative diseases such as Alzheimer's disease.

  • PDF

Homo replicus: imitation, mirror neurons, and memes (호모 리플리쿠스(Homo replicus): 모방, 거울뉴런, 그리고 밈)

  • Jang, Dayk
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.4
    • /
    • pp.517-551
    • /
    • 2012
  • We are imitating animals. True imitation can be defined as a learning to do an act from seeing it done by others. We have been building culture by imitating others' skills and knowledge with high fidelity. In this regard, it is important to ask how the faculty of imitation has evolved and how imitation behaviors develop ontogenetically. It is also interesting to see whether nonhuman animals can imitate truly or not and how different imitation learning is among human and non-human animals. In this paper, first I review empirical data from imitation studies with human and nonhuman animals. Comparing different species, I highlight their different levels of copying fidelity and explain the reason why they are showing the difference. Then I review recent studies on neurobiological mechanisms underlying imitation. The initial neurobiological studies on imitation in humans suggested a core imitation circuitry composed of mirror neuron system [inferior parietal lobule(IPL) and inferior frontal gyrus(IFG)] and the posterior part of the superior temporal sulcus(pSTS). More recent studies on the neurobiology of imitation, however, has gone beyond the studies on the core mechanisms. Finally, I try to find out implications of psychology and biology of imitation for cultural evolution. I argue for a memetic approach to cultural evolution, along the lines with a recent study on measuring memes by mirror neurons system.

  • PDF

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: Effects of PDGF-bb and BDNF on the Generation of Functional Neurons (인간 배아 줄기세포 유래 신경세포로의 분화: BDNF와 PDGF-bb가 기능성 신경세포 생성에 미치는 영향)

  • Cho, Hyun-Jung;Kim, Eun-Young;Lee, Young-Jae;Choi, Kyoung-Hee;Ahn, So-Yeon;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2002
  • Objective: This study was to investigate the generation of the functional neuron derived from human embryonic stem (hES, MB03) cells on in vitro neural cell differentiation system. Methods: For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for $7{\sim}10$ days, 20 ng/ml of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron, neural progenitor cells were cultured in i) N2 medium only (without bFGF), ii) N2 supplemented with 20 ng/ml platelet derived growth factor-bb (PDGF-bb) or iii) N2 supplemented with 5 ng/ml brain derived neurotrophic factor (BDNF) for 2 weeks. Identification of neural cell differentiation was carried out by immunocytochemistry using $\beta_{III}$-tubulin (1:250), MAP-2 (1:100) and GFAP (1:500). Also, generation of functional neuron was identified using anti-glutamate (Sigma, 1:1000), anti-GABA (Sigma, 1:1000), anti-serotonin (Sigma, 1:1000) and anti-tyrosine hydroxylase (Sigma, 1:1000). Results: In vitro neural cell differentiation, neurotrophic factors (PDGF and BDNF) treated cell groups were high expressed MAP-2 and GFAP than non-treated cell group. The highest expression pattern of MAP-2 and $\beta_{III}$-tubulin was indicated in BDNF treated group. Also, in the presence of PDGF-bb or BDNF, most of the neural cells derived from hES cells were differentiated into glutamate and GABA neuron in vitro. Furthermore, we confirmed that there were a few serotonin and tyrosine hydroxylase positive neuron in the same culture environment. Conclusion: This results suggested that the generation of functional neuron derived from hES cells was increased by addition of neurotrophic factors such as PDGF-bb or BDNF in b-FGF induced neural cell differentiation system and especially glutamate and GABA neurons were mainly produced in the system.

A Study on Literary Therapeutic Codes of Sijo Fused by Transference (전이에 의해 융합되는 시조의 문학치료 코드 연구)

  • Park, In-Kwa
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.167-172
    • /
    • 2017
  • The purpose of this study is to analyze the emotional codes of Sijo, which has been acknowledged to have excellent therapeutic function, to activate the contents of the therapy of humanities. Sijo as a function of healing forms emotional codes of therapy, which is the total of emotions, through the fusion of emotions formed during the process of appreciation of various works. This process enables the literary therapeutic activities to proceed physiologically in the human body. Just as machine learning is self-learning by cognitive functions, the coding process for encoding and re-encoding at all times operates on collections of numerous neurons in the human system. In such a process, it is predicted that amino acids are synthesized in the human body by collective encoding of emotion codes. These amino acids regulate the signaling system of the human body. In the future, if the study on the healing process as such at the contact point of humanities and human physiology proceeds, it is expected that a program of higher quality humanistic therapy will be activated.

Real time neural stimulations and reading by modulating surface acoustic wave amplitude (SAW의 진폭 모듈화를 통한 실시간 뉴런 자극과 리딩)

  • Yves, Petronil;Park, Jung-keun;Oh, Hoe-joo;Park, Yea-chan;Lee, Kee-keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1243-1244
    • /
    • 2015
  • Finding solutions for the disabled is a major challenge for our society. In the case of a disability due to a malfunction of the nervous system, the origin may be accidental, genetic, or induced by environmental factors. This type of loss can cause loss or movement disorders (paraplegia, hemiplegia, quadriplegia, epilepsy, Parkinson's disease, multiple sclerosis, etc.) or malfunction of certain sensory functions (blindness, deafness, chronic pain, etc.). Many alternatives, more technology, have been imported to create interfaces between the human body and an artificial prosthesis in order to restore some functions of the human body. A wireless system, battery neurons probe was developed for one hand reading neural signals in the brain, and on the other hand also able to excite the neuron in the brain using a surface acoustic wave one ports (SAW) delay line reflection.

  • PDF

ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease

  • Jeong, Woojin;Lee, Hyein;Cho, Sukhee;Seo, Jinsoo
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.739-746
    • /
    • 2019
  • Significant knowledge about the pathophysiology of Alzheimer's disease (AD) has been gained in the last century; however, the understanding of its causes of onset remains limited. Late-onset AD is observed in about 95% of patients, and APOE4-encoding apolipoprotein E4 (ApoE4) is strongly associated with these cases. As an apolipoprotein, the function of ApoE in brain cholesterol transport has been extensively studied and widely appreciated. Development of new technologies such as human-induced pluripotent stem cells (hiPSCs) and CRISPR-Cas9 genome editing tools have enabled us to develop human brain model systems in vitro and readily manipulate genomic information. In the context of these advances, recent studies provide strong evidence that abnormal cholesterol metabolism by ApoE4 could be linked to AD-associated pathology. In this review, we discuss novel discoveries in brain cholesterol dysregulation by ApoE4. We further elaborate cell type-specific roles in cholesterol regulation of four major brain cell types, neurons, astrocytes, microglia, and oligodendrocytes, and how its dysregulation can be linked to AD pathology.

Lithocholic Acid Activates Mas-Related G Protein-Coupled Receptors, Contributing to Itch in Mice

  • Song, Myung-Hyun;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.38-47
    • /
    • 2022
  • The present study focused on lithocholic acid (LCA), a secondary bile acid that contributes to cholestatic pruritus. Although recent studies have found that LCA acts on MAS-related G protein-coupled receptor family member X4 (MRGPRX4) in humans, it is unclear which subtypes of MRGPRs are activated by LCA in mice since there is no precise ortholog of human MRGPRX4 in the mouse genome. Using calcium imaging, we found that LCA could activate mouse Mrgpra1 when transiently expressed in HEK293T cells. Moreover, LCA similarly activates mouse Mrgprb2. Importantly, LCA-induced responses showed dose-dependent effects through Mrgpra1 and Mrgprb2. Moreover, treatment with QWF (an antagonist of Mrgpra1 and Mrgprb2), YM254890 (Gαq inhibitor), and U73122 (an inhibitor of phospholipase C) significantly suppressed the LCA-induced responses, implying that the LCA-induced responses are indeed mediated by Mrgpra1 and Mrgprb2. Furthermore, LCA activated primary cultures of mouse sensory neurons and peritoneal mast cells, suggesting that Mrgpra1 and Mrgprb2 contribute to LCA-induced pruritus. However, acute injection of LCA did not induce noticeable differences in scratching behavior, implying that the pruritogenic role of LCA may be marginal in non-cholestatic conditions. In summary, the present study identified for the first time that LCA can activate Mrgpra1 and Mrgprb2. The current findings provide further insight into the similarities and differences between human and mouse MRGPR families, paving a way to understand the complex roles of these pruriceptors.

The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

  • Guven, Mustafa;Akman, Tarik;Yener, Ali Umit;Sehitoglu, Muserref Hilal;Yuksel, Yasemin;Cosar, Murat
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.335-341
    • /
    • 2015
  • Objective : The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuro-protective effects of kefir on spinal cord ischemia injury in rats. Methods : Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results : The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-$1{\alpha}$ and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion : Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

Genome-Wide Association Study of Orthostatic Hypotension and Supine-Standing Blood Pressure Changes in Two Korean Populations

  • Hong, Kyung-Won;Kim, Sung Soo;Kim, Yeonjung
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.129-134
    • /
    • 2013
  • Orthostatic hypotension (OH) is defined by a 20-mm Hg difference of systolic blood pressure (dtSBP) and/or a 10-mm Hg difference of diastolic blood pressure (dtDBP) between supine and standing, and OH is associated with a failure of the cardiovascular reflex to maintain blood pressure on standing from a supine position. To understand the underlying genetic factors for OH traits (OH, dtSBP, and dtDBP), genome-wide association studies (GWASs) using 333,651 single nucleotide polymorphisms (SNPs) were conducted separately for two population-based cohorts, Ansung (n = 3,173) and Ansan (n = 3,255). We identified 8 SNPs (5 SNPs for dtSBP and 3 SNPs for dtDBP) that were repeatedly associated in both the Ansung and Ansan cohorts and had p-values of < $1{\times}10^{-5}$ in the meta-analysis. Unfortunately, the SNPs of the OH case control GWAS did not pass our p-value criteria. Four of 8 SNPs were located in the intergenic region of chromosome 2, and the nearest gene (CTNNA2) was located at 1 Mb of distance. CTNNA2 is a linker between cadherin adhesion receptors and the actin cytoskeleton and is essential for stabilizing dendritic spines in rodent hippocampal neurons. Although there is no report about the function in blood pressure regulation, hippocampal neurons interact primarily with the autonomic nervous system and might be related to OH. The remaining SNPs, rs7098785 of dtSBP trait and rs6892553, rs16887217, and rs4959677 of dtDBP trait were located in the PIK3AP1 intron, ACTBL2-3' flanking, STAR intron, and intergenic region, respectively, but there was no clear functional link to blood pressure regulation.