• Title/Summary/Keyword: Human Health Risk Assessment

Search Result 339, Processing Time 0.03 seconds

Risk Assessment in OECD High Production Volume Chemicals Program and its Countermeasure (OECD 대량생산화학물질 위해성평가 및 대책)

  • Kim, Myungjin;Bae, Heekyung;Choi, Yeonki;Kim, Mi Kyoung;Koo, Hyun-Ju;Song, Sang-Hwan;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.347-353
    • /
    • 2005
  • The risk assessment is the qualitative or quantitative evaluation of the risk posed to human health and the environment by the actual or potential presence or release of hazardous substances, pollutants or contaminants. The environmental impact assessment (EIA) is assessed by the environmental criteria, and risk assessment is assessed by the risk rate. Risk rate based on dose-response values may not be easy to apply on regulatory basis like EIA for uncertainty. Internationally there is an example of OECD program. Risk assessment of High Production Volume (HPV) Chemicals has started since the OECD Program with the 1990 Council Act on the Co-operative Investigation and Risk Reduction of Existing Chemicals. These HPV chemicals include all chemicals produced or imported at levels greater than 1,000 tonnes per year in at least one Member country or in the European Union region. The SIDS called the Screening Information Data Set is regarded as the minimum information needed to assess an HPV chemical to determine whether any further work should be carried out or not. All the data elements of SIDS including assessment for environment and health are prepared as three formats of the full SIDS Dossier, the SIDS Initial Assessment Report (SIAR), and the SIDS Initial Assessment Profile (SIAP) of an HPV chemical. In 1998 the global chemical industry through the International Council of Chemical Associations (ICCA) has joined to work with OECD. The OECD has assessed approximately 1,000 chemicals from 1991 through 2004 with ICCA. Till the February of 2005, 592 chemicals of those chemicals completed SIDS reports. Member countries have been targeted the goal of 1,000 new chemicals from 2005 to 2010 and Korea shared 36 chemicals from the 1,000 new chemicals. Currently Korea has completed SIDS reports of 7 chemicals among sponsored 24 chemicals. In conclusion SIDS project will be linked to national program for outputs application with more reliable production. Both the OECD and industry will carry out their commitment to complete assessments for more and the remaining chemicals assessment. The major outputs will contribute to cope with international chemical management.

A Study on Health Risk Assessment by Exposure to Organic Compounds in University Laboratory (대학 실험실에서의 유기화합물 노출에 의한 건강위험성 평가에 관한 연구)

  • Sim, Sanghyo;Won, Jung-II;Jeon, Hasub;Kim, Dowon
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.22 no.4
    • /
    • pp.49-60
    • /
    • 2021
  • Objectives: Laboratories have various latent physical, chemical, biological, and ergonomical factors according to the diversification and fusion of research and development activities. This study aims to investigate the chemical exposure concentrations of college laboratories and evaluate their health risks, and use them as basic data to promote the health of college students. Methods: The sampling and analysis of harmful chemicals in the air in laboratories were performed using Method 1500 of the U.S. National Institute for Occupational Safety and Health (NIOSH)의 Method 1500. The harmful chemicals in the laboratories were divided into carcinogenic and non-carcinogenic chemicals. Risk assessment was performed using the cancer risk (CR) for carcinogenic chemicals and using the hazard index (HI) for non-carcinogenic chemicals. Results: The harmful chemicals in college laboratories consisted of acetone, diethyl ether, methylene chloride, n-hexane, ethyl acetate, chloroform, tetrahydrofuran, toluene, and xylenes. They showed the highest concentrations in laboratories A (acetone 0.001~2.34ppm), B (chloroform 0.95~6.35ppm), C (diethyl ether 0.08~8.68ppm), and D (acetone 0.07~14.96ppm). The risk assessment result for non-carcinogenic chemicals showed that the HI of methylene chloride was 2.052 for men and 2.333 for women, the HI of N-hexane was 4.442 for men and 5.05 for women. Thus, the HI values were higher than 1. The risk of carcinogenic chemicals is determined by an excess cancer risk (ECR) value of 1.0×10-5, which means that one in 100,000 people has a cancer risk. The ECRs of chloroform exceeded 1.0×10-5 for both men and women, indicating the possibility of cancer risk. Conclusion: College laboratories showed the possibility of non-carcinogenic health risks for methylene chloride, n-hexane, tetrahydrofuran (THF), toluene, and xylenes, and carcinogenic health risks for chloroform, methylene chloride. However, this study used the maximum values of measurements to determine the worst case, and assumed that the subjects were exposed to the corresponding concentrations continuously for 8 hours per day for 300 days per year. In consideration of the nature of laboratory environment in which people are intermittently exposed, rather than continuously, to the chemicals, the results of this study has an element of overestimation.

Critical Hazard Factors in the Risk Assessments of Industrial Robots: Causal Analysis and Case Studies

  • Lee, Kangdon;Shin, Jaeho;Lim, Jae-Yong
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.496-504
    • /
    • 2021
  • Background: With the increasing demand for industrial robots and the "noncontact" trend, it is an appropriate point in time to examine whether risk assessments conducted for robot operations are performed effectively to identify and eliminate the risks of injury or harm to operators. This study discusses why robot accidents resulting in harm to operators occur repetitively despite implementing control measures and proposes corrective actions for risk assessments. Methods: This study collected 369 operator-injured robot accidents in Korea over the last decade and reconstructed them into the mechanism of injury, work being undertaken, and bodily location of the injury. Then, through the techniques of Systematic Cause Analysis Technique (SCAT) and Root Cause Analysis (RCA), this study analyzed the root and direct causes of robot accidents that had occurred. Causes identified included physical hazards and complex combinations of hazards, such as psychological, organizational, and systematic errors. The requirements of risk assessments regarding robot operations were examined, and three case studies of robot-involved tasks were investigated. The three assessments presented were: camera module processing, electrical discharge machining, and a panel-flipping robot installation. Results: After conducting RCA and comparing the three assessments, it was found that two-thirds of injury-occurring from robot accidents, causative factors included psychological and personal traits of robot operators. However, there were no evaluations of the identifications of personal aspects in the three assessment cases. Conclusion: Therefore, it was concluded that personal factors of operators, which had been overlooked in risk assessments so far, need to be included in future risk assessments on robot operations.

Risk Assessment of Genetically Modified Organisms (유전자변형 생물체의 위해성평가)

  • 김형진;김환묵
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • New breeding method by genetic engineering is expected as a key technology to solve food shortage due to the growing world population in the year 2000s. Many genetically modified organisms (GMOs) were already developed and the commercial cultivation had started. The first GMO, Flavr Savr tomato, which rotted at a much slower pace than ordinary ones, was developed in US in 1994. Since then, over than 70 different agricultural products including corn, cotton, soybean, papaya, potato, and squash made with genetically modified plants are reportedly on sale worldwide. Supporters favor the GMOs because they have greater yields, longer shelf lives and stronger resistance to disease and insects. On the other hand, opponents say that the supporters ignore a potential danger that they may damage the environment as well as human beings. To assure the safe development and use of GMOs as food and other biotech products, the possible risks on biological environment and human health should be throughly examined and regulated by developer and government. Because the biosafety problem is a global, environmental, and trade issue, a new international treaty is under development. The Cartagena Protocol on Biosafety was adopted at the 1 st Extraordinary Conference of Parties of the Convention on Biological Diversity which was held at Mont-real, Canada, Jan. 29th, 2000. The adoption of the Protocol is seen as a breakthrough in that it is based on the" Precautionary Principle" despite scientific uncertainties surrounding potential risks that GMOs may inflict on human health and the environment and that it has laid the ground for introduction of specific steps to handle international trading of GMOs. In this paper, the authors would like to introduce the current status and perspective of environmental and human risk assessment of GMOs.t of GMOs.

Design and Implementation of a Learning Organization for Autonomous Biosafety Management of Infectious Disease Laboratories by Knowledge Translation (지식확산에 의한 감염병 실험실의 자율적 생물안전관리 학습조직 설계 및 실행)

  • Shin, Haeng-Seop;Yu, Minsu
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.102-115
    • /
    • 2015
  • Objectives: A learning organization was designed and implemented on the basis of the selection criteria and essential elements of knowledge translation theory. Methods: The learning organization was designed on the basis of biosafety harmonization criteria and risk management strategy and was implemented as the learning organization for biosafety management by the National Institute of Health, Korea Centers for Disease Control & Prevention. The effect of knowledge translation in the research institutions by evidence-based policy was verified. Results: The result of applying the knowledge translation theory involving all stakeholders showed a positive reaction in establishing and implementing biosafety management strategy and embodied risk assessment criteria and evoked sympathy with the necessity of learning and using of expert knowledge about risk assessment and risk management. All stakeholders initiated voluntarily action toward new human-network construction and communication between similar organizations. The learning organization's capability expanded the base of knowledge translation. Conclusion: These results showed that a learning organization could enhance the autonomous safety management system by diffusion of knowledge translation.

Transition Characteristics and Risk Assessment of Heavy Metal(loid)s in Barley (Hordeum vulgare L.) Grown at the Major Producing Districts in Korea

  • Kim, Da-Young;Kim, Won-Il;Yoo, Ji-Hyock;Kwon, Oh-Kyung;Cho, Il Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • BACKGROUND: The concern over heavy metal(loid)s in arable land and agricultural products increases for public health in recent years. This study aims to identify transition characteristics of heavy metal(loid)s and to assess dietary risk in barley grown at the major producing districts in Korea. METHODS AND RESULTS: The soil and barley samples were collected from 38 locations around the major producing districts at Jeollabuk-do in Korea for the propose of examining the concentrations of heavy metal(loid)s. The 34 barley samples were separately purchased on the market for the same survey. The average concentration and range of arsenic (As), cadmium (Cd) and lead (Pb) in barley grown at the major producing districts in Korea were 0.037 (0.016-0.094), 0.028 (0.004-0.083) and 0.137 (0.107-0.212) mg kg-1, respectively. Currently, the maximum allowable level for barley Pb is set at 0.2 mg kg-1 in Korea, and the monitoring results suggested that some samples exceeded the maximum allowable level and required appropriate farming management. Bio-concentration factor values by heavy metal(loid)s in barley were high at Cd, copper (Cu) and zinc (Zn), similar to other crops, while As and Pb were low, indicating low transferability. CONCLUSION: Human exposure to As, Cd and Pb through dietary intake of barley might not cause adverse health effects due to relatively low concentrations, although the Pb in some barley was detected higher than the maximum allowable level. Further study on uptake and accumulation mechanism of Pb by barley might be required to assess the human health risk associated with soil contamination.

Risk Assessment of Ethylhexyl Dimethyl PABA in Cosmetics

  • Sung, Chi Rim;Kim, Kyu-Bong;Lee, Joo Young;Lee, Byung-Mu;Kwack, Seung Jun
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.131-136
    • /
    • 2019
  • Ethylhexyl dimethyl para-aminobenzoic acid (PABA) is an oily yellow liquid derivative of water-soluble PABA commonly used in sunscreen. Ethylhexyl dimethyl PABA is widely used as an ingredient in many cosmetics at an average concentration of 1.25% (0.5-2.0%) in Korea. Previous studies, including those involving animals, have demonstrated that ethylhexyl dimethyl PABA is toxic to the following four organs: testis, epididymis, spleen, and liver. In addition, experiments using human keratinocytes found that ethylhexyl dimethyl PABA inhibits cell growth and DNA synthesis at low concentrations, and halted the cell cycle of MM96L cells (human melanoma cell line) at the G1 phase. Despite limited clinical data in humans, many studies have confirmed increased mutagenicity of ethylhexyl dimethyl PABA following exposure to sunlight, which suggests that this molecule is likely to contribute to onset of sun-induced cancer despite protecting the skin through absorption of UVB. For risk assessment, the no observed adverse effect level (NOAEL) chosen was 100 mg/kg bw/day in a 4 weeks oral toxicity study. Systemic exposure dosage (SED) was 0.588 mg/kg bw/day for maximum use of ethylhexyl dimethyl PABA in cosmetics. Based on the risk assessment and exposure scenarios conducted in this study, the margin of safety (MOS) was calculated to be 180.18 for a sunscreen containing 8% ethylhexyl dimethyl PABA, which is the maximum level allowed by the relevant domestic authorities.

Study on the Methodology of the Microbial Risk Assessment in Food (식품중 미생물 위해성평가 방법론 연구)

  • 이효민;최시내;윤은경;한지연;김창민;김길생
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.319-326
    • /
    • 1999
  • Recently, it is continuously rising to concern about the health risk being induced by microorganisms in food such as Escherichia coli O157:H7 and Listeria monocytogenes. Various organizations and regulatory agencies including U.S.FPA, U.S.DA and FAO/WHO are preparing the methodology building to apply microbial quantitative risk assessment to risk-based food safety program. Microbial risks are primarily the result of single exposure and its health impacts are immediate and serious. Therefore, the methodology of risk assessment differs from that of chemical risk assessment. Microbial quantitative risk assessment consists of tow steps; hazard identification, exposure assessment, dose-response assessment and risk characterization. Hazard identification is accomplished by observing and defining the types of adverse health effects in humans associated with exposure to foodborne agents. Epidemiological evidence which links the various disease with the particular exposure route is an important component of this identification. Exposure assessment includes the quantification of microbial exposure regarding the dynamics of microbial growth in food processing, transport, packaging and specific time-temperature conditions at various points from animal production to consumption. Dose-response assessment is the process characterizing dose-response correlation between microbial exposure and disease incidence. Unlike chemical carcinogens, the dose-response assessment for microbial pathogens has not focused on animal models for extrapolation to humans. Risk characterization links the exposure assessment and dose-response assessment and involve uncertainty analysis. The methodology of microbial dose-response assessment is classified as nonthreshold and thresh-old approach. The nonthreshold model have assumption that one organism is capable of producing an infection if it arrives at an appropriate site and organism have independence. Recently, the Exponential, Beta-poission, Gompertz, and Gamma-weibull models are using as nonthreshold model. The Log-normal and Log-logistic models are using as threshold model. The threshold has the assumption that a toxicant is produce by interaction of organisms. In this study, it was reviewed detailed process including risk value using model parameter and microbial exposure dose. Also this study suggested model application methodology in field of exposure assessment using assumed food microbial data(NaCl, water activity, temperature, pH, etc.) and the commercially used Food MicroModel. We recognized that human volunteer data to the healthy man are preferred rather than epidemiological data fur obtaining exact dose-response data. But, the foreign agencies are studying the characterization of correlation between human and animal. For the comparison of differences to the population sensitivity: it must be executed domestic study such as the establishment of dose-response data to the Korean volunteer by each microbial and microbial exposure assessment in food.

  • PDF

Inorganic As Concentration in Rice Grown Around the Abandoned Mining Areas and its Health Risk Assessment

  • Kim, Hyuck-Soo;Kang, Dae-Won;Kim, Da-In;Lee, Seul;Park, Sang-Won;Yoo, Ji-Hyock;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.584-588
    • /
    • 2016
  • The current study was carried out to investigate total and inorganic arsenic (As) concentrations in 112 rice samples (husked rice and polished rice) grown around the abandoned mining areas and to estimate the potential health risk through dietary intake of rice in Korea. Mean concentrations of total As in husked rice and polished rice were 0.23 and $0.13mg\;kg^{-1}$, respectively. Also, average inorganic As concentrations in husked rice and polished rice were 0.09 and $0.05mg\;kg^{-1}$, respectively. These levels are lower than the standard guideline value ($0.2mg\;kg^{-1}$) for inorganic As in polished rice recommended by Korea Ministry of Food and Drug Safety and Codex. For health risk assessment, the average values of cancer risk probability was $5.7{\times}10^{-5}$ which was less than the acceptable cancer risk of $10^{-6}{\sim}10^{-4}$ for regulatory purpose. Also, hazard quotient values were lower than 1.0. Therefore, these results demonstrated that human exposure to inorganic As through dietary intake of rice collected from abandoned mining areas might not cause adverse health effects.

Study on the methods of risk assessment of human exposure by using of PVC flooring (PVC 바닥재 인체 노출에 따른 위해성 평가 연구)

  • Kim, Woo Il;Cho, Yoon A;Kim, Min Sun;Lee, Ji Youmg;Kang, Young Yeul;Shin, Sun Kyoung;Jeong, Seong Kyoung;Yeon, Jin Mo
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.261-268
    • /
    • 2014
  • In advanced countries, a variety of consumer exposure assessment models including CONSEXPO, are developed to manage risks of consumer products containing hazardous materials. The models are used to assess the risks of exposure to hazardous chemicals in consumer products, which serves as a foundation for regulation standards. In this study, exposure assessment models applicable for various scenarios were reviewed and a proper model was applied for the selected products and risk assessment was conducted at each stage to establish a risk assessment procedure for different types of products. Based on the exposure scenario, exposure factor was selected and according to the algorithm produced based on CONSEXPO exposure model, some level of phthalates were detected from some types of PVC flooring. However, a correlation between phthalate content and migration rate showed r-square 0.0065, little correlation, which is inadequate for estimating standard value. For this reason, it seems valid that the current standard be in place. Additionally, any new standard was not suggested as VOCs were not found harmful to human health, allowing the existing standard to be continuously applied. No migration rate was found for heavy metals and risk assessment was not performed accordingly. In this aspect, it is presumed that hazards to health through dermal exposure would be very little.