• Title/Summary/Keyword: Human HaCaT keratinocyte

Search Result 159, Processing Time 0.024 seconds

Investigation of the Antioxidant Effect of Angelicae Radix from Korea, China and Japan (참당귀, 중국당귀, 일당귀의 차등적 항산화 효능 연구)

  • Cho, Nam Joon;Lee, Woong Hee;Kim, Kee Kwang;Han, Hyo Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2017
  • The purpose of the present study is a comparison of the antioxidant effects of Angelica gigas Korea (AG), Angelica sinensis of China (AS), and Angelica acutiloba of Japan (AA), and comparison of the effects of AG, AS and AA on tight-junction related genes in human keratinocyte HaCaT cells. All species showed a strong antioxidant effect, and AA was higher than AG and AS in antioxidant effects. The cytotoxicity was confirmed to be higher in AS than AG and AA at a concentration of $1,600{\mu}g/ml$ using the MTS assay in HaCaT cells. We analyzed the effects of AG, AS, and AA on mRNA expression levels of various tight-junction related genes in HaCaT cells. We found that no obvious changes in expression of Claudin 1, 3, 4, 6, 7, 8, Occludin, JAM-A, ZO-1, ZO-2, and tricellulin by treatment of all species, suggesting that there is less possibility of side effects and skin moisturizing effects due to changes in tight-junction gene expression. Our results suggest that AG, AS, and AA are thought to be effective in reducing the oxidative stress of the skin and preventing the aging of the skin.

Ethanolic extract of Red Sweet Pepper (Capsicum annuum L.) regulates the skin inflammation in vitro and in vivo

  • Jin, Yu-Mi;Kim, Seong-Sun;Song, Young-Jae;AYE, AYE;Park, Bog-Im;Soh, Ju-Ryun;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.120-120
    • /
    • 2019
  • Allergic inflammatory disease has been increased by abnormal lifestyle and food habits. Especially, prevalence of atopic dermatitis (AD) has been elevated and treatment of AD has not been unclear. Red sweet pepper (RSP), named as Capsicum annuum L, has been known as having pharmacological effects such as antioxidant, detoxification and antibacterial effects. However, the beneficial effect of ethanolic extract of RSP on AD has not been partly examined yet. Therefore, the aim of this study was to investigate anti-inflammatory effects of RSP on AD in vitro and in vivo models. The treatment of RSP inhibited the secretion of inflammatory cytokine such as interleukin (IL)-6 and IL-8 in tumor necrosis factor (TNF)-${\alpha}$ and interferon (IFN)-${\gamma}$-stimulated human keratinocyte (HaCaT cell). Also, RSP extract regulated 2,4-dinitroflorobenzene (DNFB)-induced AD-like skin lesions in BALB/c mice. Oral administration of RSP ameliorated DNFB-induced AD-like symptoms. In presented results indicated that RSP inhibited inflammatory cytokines in HaCaT cell and ameliorated AD-like skin lesion through suppression of symptom of DNFB-induced skin inflammation. Thus, RSP might be a potential therapeutic agent for AD.

  • PDF

Niacinamide Protects Skin Cells from Oxidative Stress Induced by Particulate Matter

  • Zhen, Ao Xuan;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Kang, Hee Kyoung;Koh, Young Sang;Yi, Joo Mi;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.562-569
    • /
    • 2019
  • Niacinamide (NIA) is a water-soluble vitamin that is widely used in the treatment of skin diseases. Moreover, NIA displays antioxidant effects and helps repair damaged DNA. Recent studies showed that particulate matter 2.5 ($PM_{2.5}$) induced reactive oxygen species (ROS), causing disruption of DNA, lipids, and protein, mitochondrial depolarization, and apoptosis of skin keratinocytes. Here, we investigated the protective effects of NIA on $PM_{2.5}$-induced oxidative stress in human HaCaT keratinocytes. We found that NIA could inhibit the ROS generation induced by $PM_{2.5}$, as well block the $PM_{2.5}$-induced oxidation of molecules, such as lipids, proteins, and DNA. Furthermore, NIA alleviated $PM_{2.5}$-induced accumulation of cellular $Ca^{2+}$, which caused cell membrane depolarization and apoptosis, and reduced the number of apoptotic cells. Collectively, the findings show that NIA can protect keratinocytes from $PM_{2.5}$-induced oxidative stress and cell damage.

Antioxidative and Protective Effects of Corn Silk (Zea mays L.) Extract on Human HaCaT Keratinocyte (옥수수수염 추출물의 항산화효과 및 피부각질세포 보호효과)

  • Kim, Hyun Young;Seo, Woo Duck;Seo, Kyung Hye;Lee, Mi-Ja;Choi, Sik-Won;Lee, Kwang-Sik;Kim, Sun Lim;Kang, Hyeon Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • We investigated the antioxidative and protective effects of corn silk (Zea mays L.) ethanol extracts on human HaCaT cells and erythrocytes. The NICS-2 fraction, extracted from corn silk, exhibited favorable 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activities with $IC_{50}$valuesof$13.3{\pm}0.3{\mu}g/mL$ and $14.2{\pm}0.1{\mu}g/mL$ when compared with those of ${\alpha}$-tocopherol, a positive control, with $IC_{50}=10.4{\pm}02.2$ and $22.2{\pm}3.6{\mu}g/mL$, respectively. In addition, we investigated skin protection effects of NICS extracts of corn silk in HaCaT keratinocytes. To investigate the pharmacological potential of NICS-1 and NICS-2 extracts of corn silk on UV-B-induced damage in HaCaT cells, we measured the activity of interleukin (IL) 1a. Our results showed that all the corn silk extracts inhibited the UV-B-induced activity of IL-1a. In particular, NICS-1 extracts of corn silk significantly suppressed IL-1a activity in a dose-dependent manner without inducing cytotoxicity. These results indicate that the ethanol extracts of corn silk (Zea mays L.) could function as natural cytoprotective agents and antioxidants in biological systems, particularly the skin exposed to UV radiation, by protecting cellular membrane against reactive oxygen species (ROS).

The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

  • Cha, Ji Won;Piao, Mei Jing;Kim, Ki Cheon;Yao, Cheng Wen;Zheng, Jian;Kim, Seong Min;Hyun, Chang Lim;Ahn, Yong Seok;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.136-142
    • /
    • 2014
  • We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280-320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation.

Effect on Melanogenic Protein Expression of Acanthoic Acid isolated from Acanthopanax koreanum in Murine B16 Melanoma

  • Ham, Young-Min;Park, Soo-Yeong;Kim, Kil-Nam;Oh, Dae-Ju;Yoon, Weon-Jong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16-16
    • /
    • 2011
  • Melanogenesis is a well-known physiological response of human skin that may occur because of exposure to ultraviolet light, for genetic reasons, or due to other causes. In our effectors to find new skin lightening agents, acanthoic acid (AA) was investigated for its ability to inhibit melanogenesis. The effects of AA isolated from A.koreanumun the expression of $\alpha$-MSH-induced melanogenic factors (tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and MITF (microphthalmla-associated transcriptional factor)) were investigated in murine B16F10 melanoma cells. The results indicate that AA was an effective inhibitor of melanogenesis in B16F10 cells. To elucidate the mechanism of the effect of AA on melanogenesis, we performed Western blotting for melanogenic proteins. AA inhibited melanogenic factors (tyrosinase, TRP-1, TRP-2) expressions. In this study, we also confirmed that AA decreased the protein level of MITF proteins, which would lead to a decrease of tyrosinase and related genes in B16F10 melanoma cells. In order to apply AA to the human skin, the cytotoxic effects of the AA were determined by MTT assays using human keratinocyte HaCaT cells. Based on these results, we suggest that AA be considered possible anti-melanogenic agent and might be effective against hyperpigmentation disorders for the topical application.

  • PDF

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

  • Kim, Sang-Cheol;Kang, Jung-Il;Hyun, Jin-Won;Kang, Ji-Hoon;Koh, Young-Sang;Kim, Young-Heui;Kim, Ki-Ho;Ko, Ji-Hee;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.417-426
    • /
    • 2017
  • 4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-${\beta}$ signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-${\beta}$-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-${\beta}1$-induced G1/G0 phase arrest and TGF-${\beta}1$-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-${\beta}1$-induced canonical pathway. We observed that ERK phosphorylation by TGF-${\beta}1$ was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-${\beta}1$-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-${\beta}1$-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-${\beta}1$-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-${\beta}1$-induced cell cycle arrest.

Antimicrobial and Immunological activities of Vinca minor Extracts (빈카 마이너 추출물의 항균 및 면역활성 연구)

  • Kim, Jun-Sub;Kang, Jo-Eun;Yu, Il-Hwan;Jung, Kyung-Hwan;Moon, Gi-Seong;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.108-115
    • /
    • 2015
  • Vinca alkaloid compounds including vincamine from Vinca minor L. have been extracted by ethanol and hot water extraction methods. Antimicrobial properties of those extracts have been investigated against dandruff causing microorganism Malassezia furfur, yeast, Gram positive and negative bacteria. Vincamine standard and ethanol extract showed no sign of antimicrobial activity, whereas hot-water extract had the activity against M. furfur. Furthermore hot water extract had antimicrobial activity against Gram positive Bacillus sp. and Gram negative Escherichia coli. Cytotoxic properties of those extracts have also been investigated with HaCaT cell (human keratinocyte), HT-29 cell (human colorectal adenocarcinoma cell) and Raw cell, showing no significant cytotoxic effects. We also measured the ROS using dichlorofluorescein diacetate (DCFDA), a popular fluorescence-based probe for reactive oxygen species detection. The result showed the increasement of reactive oxygen species formation (20%) in HaCaT and HT-29 cell lines.

Gene Expression Profiles and Antioxidant Effects of Houttuynia cordata Thunb Extract in Human Keratinocyte HaCaT Cells (인간 피부각질세포 HaCaT에서 어성초 추출물의 유전체 발현 분석 및 항산화 효과)

  • Kim, Jung Min;Bang, In Seok
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1406-1415
    • /
    • 2018
  • Based on the antioxidative effects in organic solvent fractions obtained from the main methanolic extract of Houttuynia cordata Thunb, the cytoprotective effects by oxidative-stress were here analyzed. Regarding the antioxidant activity of organic solvent fractions, the electron-donating ability of DPPH increased in a dose-dependent manner, and $ED_{50}$ exhibited the highest concentration at $175{\mu}g/ml$ in the Hc-EtOAc fraction. The cell viability of Hc-EtOAc fractions on $H_2O_2$-induced HaCaT cell death ($IC_{50}$) increased in a concentration-dependent manner and a visible cell survival rate of 74% was observed at a concentration of $100{\mu}g/ml$. Meanwhile, the gene expression patterns in HaCaT cells treated with $100{\mu}g/ml$ of the Hc-EtOAc fraction for 6 and 24 hr were identified with microarray analysis. The genes involved in signal transduction, cell division, antioxidant activity, and epithelial cell proliferation were found to be 2-fold up-regulated genes in HaCaT cells following the Hc-EtOAc fraction treatment. Especially, proinflammatory cytokines (IL1B, TNF, and IL6) were identified as involved in antioxidant activity based on the expression patterns of the HaCaT cells, and pathway analysis indicated that TLR4 might be considered an upstream regulator of these genes. In order to verify the activity of IL1B, TNF, and IL6, qRT-PCR showed that the expression increased more than 2 times in HaCaT cells treated with at least $100{\mu}g/ml$ of the Hc-EtOAc fraction. The activity of the upstream regulator TLR4 protein was also increased by the Hc-EtOAc fraction. As a result, the antioxidative activity of the Hc-EtOAc fraction is predicted to pass from TLR4 through cytokines such as IL1B, TNF, and IL6.

Transcription Profiles of Human Cells in Response to Sodium Arsenite Exposure

  • Lee, Te-Chang;Konan Peck;Yih, Ling-Huei
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.59-69
    • /
    • 2001
  • Arsenic exposure is associated with several human diseases, including cancers, atherosclerosis, hypertension, and cerebrovascular diseases. In cultured cells, arsenite, an inorganic arsenic com-pound, was demonstrated to interfere with many physiological functions, such as enhancement of oxidative stress, delay of cell cycle progression, and induction of structural and numerical changes of chromosomes. The objective of this study is to investigate the effects of arsenic exposure on gene expression profiles by colorimetric cDNA microarray technique. HFW (normal human diploid skin fibroblasts), CL3 (human lung adenocarcinoma cell line), and HaCaT (immortalized human keratinocyte cell line) were treated with 5 $\mu\textrm{M}$ or 10 $\mu\textrm{M}$ sodium arsenite for 6 or 16 h, respectively. By a dual-color detection system, the expression profile of arsenite-treated cultures was compared to that of control cultures. Several genes expressed differentially were identified on the microarray membranes. For example, MDM2, SWI/SNF, ubiquitin specific protease 4, MAP3K11, RecQ protein-like 5, and Ribosomal protein Ll0a were consistently induced in all three cell types by arsenite, whereas prohibitin, cyclin D1, nucleolar protein 1, PCNA, Nm23, and immediate early protein (ETR101) were apparently inhibited. The present results suggest that arsenite insults altered the expression of several genes participating in cellular responses to DNA damage, stress, transcription, and cell cycle arrest.

  • PDF