• Title/Summary/Keyword: Human Gait

Search Result 231, Processing Time 0.032 seconds

Control Gait Pattern of Biped Robot based on Human's Sagittal Plane Gait Energy (인간 관절 에너지 분석을 통한 이족로봇의 자연스러운 보행 제어)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, gait trajectories of the biped robot on the sagittal plane are not enough to construct the complete gait pattern because the biped robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained, as proved by the experiments.

Automated Markerless Analysis of Human Gait Motion for Recognition and Classification

  • Yoo, Jang-Hee;Nixon, Mark S.
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.259-266
    • /
    • 2011
  • We present a new method for an automated markerless system to describe, analyze, and classify human gait motion. The automated system consists of three stages: I) detection and extraction of the moving human body and its contour from image sequences, ii) extraction of gait figures by the joint angles and body points, and iii) analysis of motion parameters and feature extraction for classifying human gait. A sequential set of 2D stick figures is used to represent the human gait motion, and the features based on motion parameters are determined from the sequence of extracted gait figures. Then, a k-nearest neighbor classifier is used to classify the gait patterns. In experiments, this provides an alternative estimate of biomechanical parameters on a large population of subjects, suggesting that the estimate of variance by marker-based techniques appeared generous. This is a very effective and well-defined representation method for analyzing the gait motion. As such, the markerless approach confirms uniqueness of the gait as earlier studies and encourages further development along these lines.

Fabrication of shoes for analyzing human gait pattern using strain sensors (스트레인센서를 이용한 걸음걸이 패턴 분석 신발제작)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1407-1412
    • /
    • 2013
  • The human gait pattern analysis shoes have been developed for our healthy lfe, which is largely dependent on a posture and a skeletal structure affected by daily lifestyle and gait pattern. There are generally 3 types of human gait, such as normal gait, intoeing gait, and outtoeing gait. We have analyzed one's gait pattern through walking put on the developed shoes.

Biped robot gait pattern generation using frequency feature of human's gait torque analysis (인간의 보행 회전력의 주파수 특징 분석을 이용한 이족로봇의 적응적 보행 패턴 생성)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.100-108
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, galt trajectories of the biped robot on the sagittal Plane are not enough to construct the complete gait pattern because the bided robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.

Patterns of Foot-Floor Contact and Electromyography Activity during Termination of Human Gait

  • Vanitchatch, Prachuab
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.923-926
    • /
    • 2000
  • This paper concerned with the patterns of foot-floor contact and electromyography activities of the lower extremity of the body during the termination of human gait. The termination of human gait is defined as the transition from a steady-state gait to a quiet standing posture. The transition between these two states has not been extensively studied and defined. There appears to be a critical period in the gait cycle that the decision to terminate gait or continue to take an additional step must be made.

  • PDF

Construction of a Gait Analysis System for Evaluating Gait Abnormalities (보행 비정상성의 평가를 위한 보행분석 시스템의 구현)

  • Chung, Min-Keun;Kim, Sang-Ho;Kim, Tae-Bok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.39-50
    • /
    • 1991
  • The movement of human beings - walking, running, jumping and climbing, etc. - have long been of scientific interest. In particular, the science of human walking is called gait analysis. Various instruments have been developed to assist in the study of human gait. Recently gait analysis techniques are used in medical research to investigate the abnormalities of pathological gait. In this study, we constructed a comprehensive gait analysis system consisting of a walkway, a force platform, foot-switches and an ExpertVision motion analysis system. Time-distance gait parameters and vector diagrams can be analyzed by a special application program called Force Analysis System(FOANAS). Using quantitative discrimination of this system, the gait characteristic parameters of normal and pathological gait is facilitated.

  • PDF

Dynamic Bayesian Network-Based Gait Analysis (동적 베이스망 기반의 걸음걸이 분석)

  • Kim, Chan-Young;Sin, Bong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.354-362
    • /
    • 2010
  • This paper proposes a new method for a hierarchical analysis of human gait by dividing the motion into gait direction and gait posture using the tool of dynamic Bayesian network. Based on Factorial HMM (FHMM), which is a type of DBN, we design the Gait Motion Decoder (GMD) in a circular architecture of state space, which fits nicely to human walking behavior. Most previous studies focused on human identification and were limited in certain viewing angles and forwent modeling of the walking action. But this work makes an explicit and separate modeling of pedestrian pose and posture to recognize gait direction and detect orientation change. Experimental results showed 96.5% in pose identification. The work is among the first efforts to analyze gait motions into gait pose and gait posture, and it could be applied to a broad class of human activities in a number of situations.

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

Feature Space Analysis of Human Gait Dynamics in Single View Video

  • Sin, Bong-Kee;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1778-1785
    • /
    • 2010
  • This paper proposes a new video-based method of analyzing human gait which is a highly variable dynamic process. It captures a human gait of varying directions as a trajectory in the phase space. The proposed method includes two options of a stochastic process model and a self-organizing feature map as the tool of feature space representation and analysis. Test results show that the model is highly intuitive and we believe it can contribute to our understanding of human activity as well as gait behavior.

Gait Pattern Generation Algorithm for a Biped Robot with Toes

  • Min, Kwan-Sik;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.4-107
    • /
    • 2002
  • One of the most important functions of a biped robot is to walk naturally like human. For the human being, toe is very important joint in order to walk naturally. Thus, for a biped robot, the existence of toe joint much affects gait pattern generation and contributes to natural walking, which is similar to the human gait or faster walking like running. Since a conventional biped robot has the feet which consist of soles without toes, it seems difficult to walk naturally. For realizing the gait to be similar to human one, toes are necessary to the biped robot. In this paper, the effect of the toe joint for gait pattern generation is studied. In order to find the effect of toe joint, a biped r...

  • PDF