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Feature Space Analysis of Human Gait Dynamics
in Single View Video

Bong-Kee Sin*, Ki-Ryong Kwon'"

ABSTRACT

This paper proposes a new video-based method of analyzing human gait which is a highly variable
dynamic process. It captures a human gait of varying directions as a trajectory in the phase space. The
proposed method includes two options of a stochastic process model and a self-organizing feature map
as the tool of feature space representation and analysis. Test results show that the model is highly
intuitive and we believe it can contribute to our understanding of human activity as well as gait behavior.
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1. INTRODUCTION

Recently computer recognition of human motion
has been receiving increasing attention from com-
puter vision researchers as is witnessed by a num-
ber of review papers by J. K. Aggarwal et al. [1].
Among the variety of motion types, human gait is
one of the most stereotyped periodic activity that
can be characterized by such features as strides,
cadence, gender as well as the swinging behavior
of the arms and even the torso. Most recently,
thanks to the development of improved modeling

techniques, researchers have begun to model gen-

# Corresponding Author: Bong-Kee Sin, Address:
(608-737), IT Convergence and Applications Eng., Pukyong
National University, Daeyon-dong 599-1, Nam-ku,
Busan, TEL : +82-51-629-6256, FAX : +82-51-629-6230,
E-mail © bkshin@pknu.ac.kr
Receipt date : Nov 30. 2010, Revision date : Dec. 21, 2010
Approval date: Dec. 28, 2010
' Dept. of IT Convergence and Applications Eng.,
Pukyong National University, Korea
v Dept. of IT Convergence and Applications Eng.,
Pukyong National University, Korea
(E-mail: bkshin@pknu.ac.kr, krkwon@pknu.ac.kr)
% This research was financially supported by the
Ministry of Education, Science Technology (MEST) and
Korea Institute for Advancement of Technology (KIAT)
through the Human Resource Training Project for
Regional Innovation and the Korea Research Foundation
Grant funded by the Korean Government (MEST) (KRF
2009-0075855).

eral human motion [2]. Still, however, the issue of
modeling human walking motion has received little
attention other than a few results presented by the
author.

This paper presents an interesting view on
modeling of gait dynamics by visualizing it as a
trajectory in the feature space mapped to a state
space. It considers two types of models, a random
process called the factorial hidden Markov model
(FHMM) [3] and the self-organizing feature map
(SOM) [4].

They are trained with human sithouettes ob-
served at various angles. The FHMM, a variant
of conventional HMM, captures the dynamics of
the human walking motion at arbitrary angles of
view, On the other hand the SOM is not about the
gait dynamics but quantizes walking stances by
tessellating the feature space, a very simple way
visualizing the space with an interesting topology.
Then a gait sequence can be interpreted as a se-
quence of SOM stances. We can tell the orientation
and direction or the path of a pedestrian by analyz-
ing his or her trajectory.

The orientation of a pedestrian has been a very
cumbersome issue among researchers. It has been
approached with 3D human models but hampered
by the uncertainty and imprecision of the extracted
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features. The contribution of this paper is found
in the way of describing or coding the input via
a set stereotypical gait stances. It could be deemed
as an informed way of feature extraction over-
coming the aforementioned difficulty. The result of
this method can be further processed with high-
er-level models such as the hidden Markov model
and the dynamic Bayesian network, which is be—
yond the scope of this paper.

This paper is organized as follows: In Section
2 a brief sketch of the procedure of the proposed
methods is presented. Then Section 3 describes the
two models. Then Sections provides test results
qualitatively and quantitatively, followed by a
conclusion.

2. OVERVIEW OF THE APPROACH

The proposed approach to gait analysis consists
of three stages: feature extraction, modeling train—
ing, and then analysis of the model behavior. In
feature extraction we are given a video sequence
captured from a fixed camera. A detailed descrip-
tion of the step can be found in Suk et al. [2] and
Kim et al. [6]. But a brief description of the profile
vector is due here. [Figure 1} shows a sketch of
the overall process of the proposed methods.

One of the simplest and direct ways to represent
the shape of a pedestrian is the silhouette of the
hody against the background. The silhouette can
simply be described by a sequence of boundary

points. It is obtained through a process of back-

ground subtraction. We then describe its shape by
a profile vector ye ®* that is composed of 40 hori-
zontal distance values from the vertical center, half
to the left and half to the right boundary of the
silhouette. The elements of the vector are then nor—
malized with respect to the height of the human
blob.

Human walking motion is cyclical with arms
and legs being synchronized pendulums. These
arms and legs are the body parts with biggest mo—
tion and change in appearance. Other parts do not
move other than the forward translation due to the
gait. In fact a covariance matrix of the 40-dimen-
sional feature vectors reveals the expected result
[2].

This observation has led us to reduce the in-
formation redundancy or useless feature com-
ponents. According to a data analysis, we could re—
duce the dimension down to about 7 with little (<
8%) loss of information.

[Figure 2] shows the so-called ‘eigen-gait’ pro-
file vectors €, i=1,...,7, as well as the global mean
profile u, on the far left. Each pair of wobbly
curves represents an ecigen—gait profile without
scaling, while the central smooth but slithery ver-
tical curves the profile scaled by the corresponding
standard variation. The mean vector and the ei~-
gen—gaits with an appropriate scaling will sum up
to reconstructions of the original input profile as
shown in the lower row of [Figure 2].

The feature vectors of reduced dimension are

considered to be an adequate representation of in-

image pedestrian feature
capture detection extraction
SOM
&
Gait
Decoder
_ - profile feature
video frame silhouette vector vector

Fig. 1. System organization.
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Fig. 2. (upper row) The mean and wiggly eigen-gait profiles, {lower row) an input profile and incremental
reconstructions. € =Hy represents the profile mean.

put frames. Then we can safely assume that a se-
quence of profile vectors captures the gait dynam-
ics in the same way the corresponding video se

quence does. The actual analysis will be possible
in many ways, but an intelligent analysis is possi-
ble only if we have a model for the target pattern.

3. GAIT MODELS

There are two kinds of models considered in this
study, one describing the feature space structure,
and the other the state—space dynamics.

3.1 SOM-based Gait Coder

Given a sequence of profile vectors, we approach
gait analysis using a self-organizing map or SOM
to describe the snapshot of each gait. Gait dynam-
ics can be modeled by analyzing the trajectory in
the SOM output space as well as in the feature
vector space.

The SOM-hased gait coder was reported earlier
by the author [5]. It has a set of 40 input elements
(PCA was not applied in order to minimize the loss

of information) and a mesh of output layer nodes.

The latter has been designed to have a total of 64
(= 8x8) output nodes, each corresponding to a ster—
eotypical gait stance in a particular orientation.
Taking into account of the fact that a human gait
is composed of a cyclic sequence of stereotypic
stances, the output layer has a cylindrical surface
topology with each node corresponding to a typical
stance with a typical orientation. See [Figure 3].

SOM

quantization. It divides the feature space into a

is a well-known model of vector

Fig. 3. SOM architecture and output node weight
vectors. The color of each prototype on the
right represents the gait direction in the
input image.
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fixed number of regions with more or less uniform
density. Any sample falling in one region can then
be denoted by the region’s simple identifier.

The only inference using this model is a simple
maximization over the output layer nodes given an
input vector. That is,

k, :argmax||wi~y,H 1

ieM

where M is the set output layer nodes of the
Gait Coder, W; the weight vector to node i, and ¥;
the input feature vector at time ¢. There is no dy—
namics whatsoever included here. The max-
imization is done out of temporal context.
Therefore the decision may not be intelligent, but
this model can be used as a baseline model to com-
pare the performance of the second model de-

scribed in the next section.

3.2 HMM-based Gait Decoder

Given a sequence Human walking motion over
time can be factored into gait pose (representing
the direction of movement) and gait posture
(representing the swinging stance of the arms and
legs). They are assumed to be independent of each
other. But together they define the appearance of

the subject. In the proposed model, the dynamics

(a)

of human gait is described by two random proc-
esses as well as the observation process describing
the variability of the actual appearance. The three
processes are denoted by W} for the pose model,
X} for the posture model, and {¥} for the
observation. These variables are related to each
other as shown by the arcs in [Figure 4(a)].

The pose process W} is a first-order Markov
chain with a fully connected discrete state space.
It models walking direction change. In the experi-
ment, we defined eight different directions, and al-
lowed arbitrary change of pose using a fully—con-
nected topology of state space as shown in the cen-
ter of [Figure 4(b)]. Similarly X} is also a
first-order Markov chain but with a different state
space structure. Following the cyclic nature of arm
swing, X, has a one-way cyclic transition
topology. For computational convenience and sim-
plicity, we used a run time structure of the model
as shown in [Figure 4(a)], which is essentially a
two-level HMM with a set of observation-free
dummy nodes. Then the full state space HMM is
given in [Figure 4(b)] where each small outer ring
represents the circular state space of a particular
pose (orientation) represented by the correspond-
ing inner node.

Given the Decoder interpreted as an extended

()

Fig. 4. The FHMM-based Gait Decoder. {a) the model, (b) the state space structure where inner nodes
and broken arcs represent respectively dummy nodes and null transitions.
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HMM, model decoding given an input sequence is
straightforward if we employ the well-known
Viterbi algorithm. Even the decoding for the origi-
nal FHMM is not much different if we use the
max-product [6]. For readers’ reference we de-
scribe here a simpler dynamic programming-based
inference algorithm which has been reported in [7].
Given three random processes W =W, =WW,--W,
X=X, =XX,X;, and Y=Y, =X¥,--Y a
probabilistic inference is about evaluating the joint
probability Pr(W,X,¥=y\y,---¥;) where both W
and X are unobserved hidden variables. In order
to define a recurrence relation exploiting the opti-
mality principle, we define the following probability
~of initial partial sequences (#,,X,,.Y,) where
W,=j and X, =I:

Ar(jslﬂy;n):Pr(Vf/\a—\ﬁm = j’)A(I:z/)’Xf =l’Y1:1)

. (2)
= max Pr{W¥, W, =X, .X =11,)

=127 =12y
TR,

Using the product rule of probability, this can
be written as

Wimt W, = j\Wie
A (jLYy) = max Ky [P X, =11X, (3)
Yoot 1 X g h
‘let—l Y=y Yy J

which in turn can be represented by the follow-
ing recurrence relation using the parameters of the
FHMM-based Gait Decoder.

AI (j’ l’ Y;:t 1

Y= n}‘%x AL GRY, )a,;y a:fbjy (y,)
1eS*, jeS”, 1=2...T. 4

Here

" ={,2,...8}: the state space of ¥,

§%={1,2,...,8}: the state space of X,

aj © the state transition probability from W, =i
tO yVH—l =} ]

a; : the state transition probability from X, =k
to Xz+1 =1 .

;. the output probability of Y=Y, in state
W,=j and X, =I.

In order to obtain the best state sequence, we
have to perform the bookkeeping of the best states

at each time and state as

¥, (j,) = . k) = argmax A, (1, k, Y, af] ) ()
(i,k} .

After the forward maximization procedure, we
can recover the ‘best’ state sequence or the most
likely answer by backtracking the path in the for-
ward trellis starting from

(Wr,)A(T) =argmax ¥, (i, k) (6)

(i.k) .
In our experiments, the state sequence will cor—

respond to a trajectory in the feature space.

4. EXPERIMENTAL RESULTS

4.1 SOM-based Gait Coder

SOM training is highly data~ and computa-
tion-intensive process. In this study we used the
model described in the previous study {5l. There
were 8 video sequences about a subject walking
along a circle and an 8-shaped curve. They were
captured at 15 frames per second, and each se-
quence contains about 320 frames of dimension 320
x160.

Training fits each output nodes - more precisely
the weights leading from the input to the node -
to a corresponding cluster of feature vectors.
[Figure 5] shows a 3-dimensional visualization of
the 64 weight vectors and the feature space map-
ping of the weight vectors for each node. There
are 64 prototype profiles. They can cover all possi-
ble input profiles with a margin of errors.

Let us now consider a sample pedestrian tra—
jectory for a human gait along a circle. [Figure 6]
shows the analysis of the feature space using the
SOM Gait Coder. The curve in [Figure 4(a)] was
halved into parts: the left darker/red curve repre-
sents the frontal half circle going to the right and
the other on the left the farther half circle going
to the left. [Figure 4(a) and (b)] show how a sample
gait on a rectangular path is mapped to the profile
prototype class space of SOM Gait Coder. In
[Figure 6(b)], each of the four distorted closed
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Fig. 5. SOM Gait Coder output node vectors. (a) visualization, (b) feature space mapping of the mesh

topology.

(a)

curves represent the chain of gait postured in the
corresponding direction, while those big arrows
represent change of gait directions. Note that the
view in the latter space is much simpler. This is
the effect of using the proposed Gait Coder hased
on SOM.

1

(b)

Fig. 6. (a) Feature space modeling with SOM Gait Coder, (b) input gait sequence in the feature vector
space, and (c¢) the trajectory of walking along a rectangular path shown in both the feature space
and the SOM output node space.

4.2 HMM-based Gait Decoder

For the second experiment using the FHMM-
based Gait Decoder, we used a small CMOS cam-
era to capture six times the gait along a circular
path, a total of 9,780 frames. Among them five se—

quences were used for training the HMM, and the
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other for testing. We used OpenCV and Visual C++
for feature extraction and Matlab® for model
inference.

Human gait is a dynamic activity that can be
characterized by a spatiotemporal trajectory in the
feature space. There are two ways of visualizing
the trajectories. One is rendering the trajectories
in the PCA subspace with dimensionality reduced
down to two as shown in [Figure 7]. The back-
ground dots represent a collection of profile sam-
ples and the light-colored (red) curve represents
a sequence of frame vectors along the trajectory
for a gait along circular path turning counter
clockwise. The curve looking like a butterfly can
be divided into two parts at the middle. Just like
the [Figure 6(b)], the left half represents the frontal
half circle path going to the right as annotated by
the small image clips for I to IV. The remaining
part on the right goes along the farther half of the
circle going to the left corresponds to stages of V
to VIII. We can interpret the gait direction accord-
ing to the profile location in that space, and the gait
path according to the trajectory in that space.

[Figure 8] shows the HMM states and the corre—

sponding regions in the feature space in the order

02

g1+

0.1

0.2

B350

o4 03 o1 0 01 02 03 04

Fig. 7. Gait trajectory in the feature space. The input
gait sequence (light-colored or red) starts at
the top center, goes down a bit and then to
the left along the big loops. Then it move up
and right to stay in the right half before re~
turning way up to the top center. It is modeled
by a darker/blue trajectory corresponding to
the HMM state space.
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Fig. 8. The state space of the HMM-based Gait
Decoder.

of circular path starting from I ending in VIIL
Given this model, we can interpret any natural
walking behavior in terms of the model state tra-
jectory as shown in simpler darker (blue) curves
shown in [Figure 7). Here each knot represents the
walking or swinging posture in a particular ori—
entation while several bigger dots mark the start
of a new discrete orientation. According to this in-
terpretation, we can tell a lot about the pedestrian’s
behavior, particularly any changes in walking
direction. Finally note that the original feature
space is of high dimension and the all the figures
are two dimensional projection for the sake of

illustration.

4.3 Gait Direction Classification

One qualitative measure of the proposed models
is the accuracy of the decoding results. For this
test, we defined four gait directions for SOM
Encoder and eight directions for FHMM decoder.
We performed the test over a hand-labeled data
set consisting of total 753 frames. [Table 1] shows

a summary of the result.

5. CONCLUSION

Although often perceived as well-structured cy-
clic patterns to the eye, gait appears ill-posed and
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Table 1. Gait direction classification (%).

Gait direction | SOM Encoder | FHMM decoder
) 94.7 91.4
N 95.6
- 96.1 96.0
7 96.8
1 935 96.3
N 94.0
“ 96.0 98.7
v 97.6
Average 95.0 96.5

poses a difficulty in modeling the three-dimen-—
sional motion from a two-dimensional projection
captured from a camera. This paper presents two
approaches of modeling and analyzing the gait se-
quence and dynamics given a sequence of profile
vectors as a representation of human silhouettes.
The SOM-based Gait Coder is fairly interesting in
showing that a pedestrian shape can be viewed as
one of merely 64 (or more or less) postures. The
second model, an HMM-hased Gait Decoder, is es—
sentially a model for the gait dynamics unlike the
SOM-based one. The author believes that the two
models lay the foundation of and will contribute to
systematic analysis of human gait in particular and

human motion in general in the future.
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