• Title/Summary/Keyword: Human Fibroblast

Search Result 799, Processing Time 0.025 seconds

The Effect of Basic Fibroblast Growth Factor in Acellular Human Dermal Grafts in Rats (흰쥐에 시행한 무세포 인체 진피 이식에서의 Basic Fibroblast Growth Factor의 효과)

  • Lee, Hun-Joo;Kim, Yang-Woo;Cheon, Young-Woo
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.567-575
    • /
    • 2011
  • Purpose: Acellular human dermis is very useful implant for use in plastic and reconstructive surgery. However, the volume of acellular human dermis graft is known to decrease for a long time. Basic fibroblast growth factor (bFGF) is a polypeptide that enhances the collagen synthesis and angiogenesis. In the current study we examined whether bFGF could improve the survival of acellular human dermis ($SureDerm^{(R)}$) by increasing angiogenesis of the graft. Methods: Forty rats were divided into two groups (control and bFGF). A 2-mm thick piece of $SureDerm^{(R)}$ was cut into smaller pieces that were $15{\times}5$ mm in size. Two subcutaneous pockets were made on the back of each rat. Grafts sprayed with bFGF were implanted in the bFGF group and injected with bFGF after transplantation every 3 days for 2 weeks. In the control group, the grafts were treated with phosphate-buffered saline (PBS) instead of bFGF. Four days, and 1, 4, and 12 weeks after the implantation, the grafts were harvested and gross and histologic examinations were performed. Inflammation grade, graft thickness, neocollagen density, and neocapillary count were measured. Results: The bFGF group displayed more rapid accumulation of inflammatory cells with a higher density of neocapillaries, and increased active collagen synthesis. After 12 weeks, the thickness of the grafts in the control and bFGF groups was $75.15{\pm}4.80%$ and $81.79{\pm}5.72%$, respectively, in comparison to the thickness before transplantation. There was a statistically significant difference between both groups ($p$ <0.05). Conclusion: bFGF was effective in reducing the absorption of acellular human dermal grafts by increasing angiogenesis and accelerating engraftment. In conclusion, bFGF may be a good tool for use in acellular human dermal graft transplantation for reconstructive surgery involving soft-tissue defects.

Effects of Danchisoyo-san on UVB-induced Cell Damage and Gene Expression in Dermal Fibroblast (단치소요산(丹梔逍遙散)이 자외선을 조사한 피부진피세포의 활성 및 유전자발현에 미치는 영향)

  • Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.2
    • /
    • pp.13-32
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Danchisoyo-san (DS) on cell damage and gene expression in UVB-exposed dermal fibroblast. Methods: To demonstrate the inhibitory effects of DS on aging of the skin, we used human dermal fibroblast(F6) and UVB light(30 mJ/$cm^2$) was used to damage to dermal fibroblast. We measured the nitrite production, LDH release, and gene expression in UVB-irradiated dermal fibroblast to elucidate the actionmechanism of DS. Also, we evaluated the amount of increased PICP, TIMP-1 in dermal fibroblast. PICP, TIMP-1 concentration was measured using EIA kit, and gene expression (MMP-1, procollagen, c-fos, c-jun, NF-kB, Bcl-2, Bcl-xL, iNOS) were determined using real-time PCR. Results: 1. DS inhibited LDH-release, nitrite production in UVB-irradiated dermal fibroblast. 2. DS suppressed the gene expression of MMP-1 in UVB-irradiated dermal fibroblast. 3. DS increased the gene expression of procollagen in UVB-iradiated dermal fibroblast. 4. DS suppressed the gene expression of c-jun, c-fos, NF-kB, iNOS in UVBirradiated dermal fibroblast. 5. DS increased the gene expression of Bcl-2 in UVB-iradiated dermal fibroblast. 6. DS increased the cell proliferation of dermal fibroblast. Conclusions: From the results, we concluded DS increases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that DS has the antiwrinkle effects.

Effects of Kwibi-tang on Dermal Fibroblast (귀비탕(歸脾湯)이 인체피부 섬유아세포에 미치는 영향)

  • Je, Yun-Mo;Yoo, Jeong-Eun;Choi, Kyung-Hee;Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.4
    • /
    • pp.10-19
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Kwibi-tang extract(KB) on dermal fibroblast. Methods: To demonstrate the effects of KB on dermal fibroblast, we used human dermal fibroblast(F6) and UVB light(30 $mJ/cm^2$) was used to damage to dermal fibroblast. we measured the nitrite production, LDH release in UVB-irradiated dermal fibroblast to elucidate the action-mechanism of KB. Also, we evaluated cell proliferation of dermal fibroblast and the amount of increased PICP, TIMP-1 in dermal fibroblast. Results: 1. KB decreased the cell proliferation of F6 dermal fibroblast in concentration of 50 ${\mu}g/ml$. 2. KB decreased the synthesis of PICP in concentration of 50 ${\mu}g/ml$. 3. KB decreased the synthesis of TIMP-1 in concentration of 50 ${\mu}g/ml$. 4. KB have no effect on the damage in UVB-irradiated F6 dermal fibroblast. Conclusions: From the results, we concluded KB decreases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that KB has the anti-hyperplasy of dermal fibroblast.

Colony Size Distributions according to in vitro Aging in Human Skin Fibroblasts (피부 섬유모세포 노화에 따른 세포집락 크기의 분포)

  • Kim, Jun-Sang;Kim, Jae-Sung;Cho, Moon-June;Park, Jeong-Kyu;Park, Tae-Hyun
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 1999
  • Purpose : To investigate the percentage of colonies wi1h16or more cells distribution of human skin fibroblast according to in vitro aging, and to evaluate the relationship between percentage of colonies with 10 or more cells and in vivo donor age in human skin fibroblast culture. Material and Method : C1, C2, C3a, and C3b human skin fibroblast samples from three breast cancer patients were used as subjects. The C1, C2, and C3a donor were 44, 54, and 55 years old, respectively. C3a and C3b cells were isolated from the same person. Single cell suspension of skin fibroblasts was prepared with primary explant technique. One hundred cells are plated into 100m1 tissue culture flask and cultured for two weeks. The colony size was defined as colonies with 16 or more cells. The cultured cell was stained with crystal violet, and number of cells in each colony was determined with stereo microscope at $\times$10 magnification. Passage number of C1, C2, C3a and C3b skin fibroblast were 12th, 17th, and 14th, respectively. Results : Percentage of colonies with 16 or more cells of skin fibroblast samples decreased with increasing in vitro passage number. In contrast, cumulative population doublings of skin fibroblast sample increased with increasing in vitro passage number. Percentage of colonies with 16 or more cells also decreased with increasing population doublings in human skin fibroblast culture. There was strong correlation with percentage of colonies with 16 or more cells and population doublings En C3a skin fibroblast sampie. At the same point of population doublings, the percentage of colonies with 16 or more cells of the young C1 donor was higher level than the old C3a donor. Conclusion : The population doublings increased with increasing in vitro passage number but percentage of colonies with 16 or more cells decreased. The results of this study imply that percentage of colonies with 16 or more cell is useful as a indicator of in vitro human skin fibroblast aging and may estimate the in vivo donor age.

  • PDF

Preparation of cross-linked silk fibroin film by γ-irradiation and their application as supports for human cell culture

  • Park, Hyean-Yeol;Kim, Yoon-Seob;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • This study described about preparation of the cross-linked silk fibroin (SF) film by ${\gamma}$-irradiation of the casted SF film, which is fabricated from aqueous solution regenerated via fibers of cocoons and their application as supports for human cell culture. The properties of cross-linked SF film were evaluated by FT-IR spectroscopy, contact angle, solubility to water, thermal analysis, surface area analyzer, and morphology via scanning electron microscopy (SEM). The cross-linked SF films were not dissolved in water and exhibited the rough surface morphology, large surface area, and good thermal properties. The human fibroblast cell (CCD-986sk) and embryo kidney-ft cell were well growed on the surface of cross-linked SF film supports prepared by ${\gamma}$-irradiation. The cross-linked SF film prepared by ${\gamma}$-irradiation can be used as biomaterials for human cell culture.

Triclosan Inhibition of Prostaglandin $E_2$ Production in Human Gingival Fibroblast (치은 섬유모세포에서 Triclosan에 의한 Prostaglandin $E_2$ 합성 억제)

  • Park, Seong-Pyu;Chung, Hyun-Ju;Kim, Young-Joon;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.345-356
    • /
    • 2004
  • The triclosan was shown to have anti-microbial and anti-inflammatory effect with inhibition of inflammatory mediators such as prostaglandin $E_2(PGE_2)$. The purpose of this study was to elucidate whether and how $PGE_2$ could be inhibited by triclosan in human gingival fibroblast. Human gingival fibroblast-1 cells (ATCC CRL2014) were pre-treated for 1 hour with triclosan (0.001 ${\mu}/ml{\sim}10$ ${\mu}/ml$) and then stimulated with $TNF-{\alpha}$ (1.0 ng/ml). $PGE_2$ synthesis was evaluated by ELISA and gene expression of COX-1 and COX-2 was evaluated by RT-PCR after $TNF-{\alpha}$, triclosan, and NS-398 (COX-2 inhibitor, 5, ${\mu}M$) and/ or cycloheximide (protein synthesis inhibitor, 2 ${\mu}g/ml$). Triclosan was cytotoxic to human gingival fibroblasts in the concentration higher than 1.0 ${\mu}g/ml$ for longer than 24 hours in tissue culture. The $PGE_2$ synthesis was inhibited by triclosan in dose-dependent manner. Greater COX-2 mRNA suppression was observed with triclosan (0.1 ${\mu}g/ml$) than with $TNF-{\alpha}$ alone, without change in COX-1 gene expression. Inhibitory effects of triclosan on $PGE_2$ synthesis disappeared in presence of cycloheximide. This study suggests that triclosan inhibit prostaglandin $E_2$ at the level of COX-2 gene regulation and require de novo protein synthesis.

Upregulation of miR-760 and miR-186 Is Associated with Replicative Senescence in Human Lung Fibroblast Cells

  • Lee, Young-Hoon;Kim, Soo Young;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.620-627
    • /
    • 2014
  • We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) downregulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the ${\alpha}$ subunit of CK2 ($CK2{\alpha}$) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the $CK2{\alpha}3^{\prime}$-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for $CK2{\alpha}$ downregulation. The four miRNAs increased senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) staining, p53 and $p21^{Cip1/WAF1}$ expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. $CK2{\alpha}$ overexpression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through $CK2{\alpha}$ downregulation-dependent ROS generation.

Basic Fibroblast Growth Factor(bFGF) Inhibits Radiation-induced Apoptosis on Human Umbilical Vein Endothelial Cells(HUVECs) (18) 방사선에 의한 제대 혈관내피세포의 apoptosis와 Basic Fibroblast Growth Factor의 억제 효과)

  • Lee Song Jae;Chang Jae Chul
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.25 no.1
    • /
    • pp.317-323
    • /
    • 1999
  • The response of endothelial cells to ionizing radiation is thought to be an important factor in the overall response of normal tissue. It has been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects endoth

  • PDF

Processed Panax ginseng, Sun Ginseng Increases Type I Collagen by Regulating MMP-1 and TIMP-1 Expression in Human Dermal Fibroblasts

  • Song, Kyu-Choon;Chang, Tong-Shin;Lee, Hye-Jin;Kim, Jin-Hee;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the present study, effects of sun ginseng (SG) on the collagen synthesis and the proliferation of dermal fibroblast were investigated. Collagen synthesis was measured by assaying procollagen type I C-peptide production. In addition, the level of matrix metalloproteinase (MMP)-1 was assessed by western blot analysis. SG suppressed the MMP-1 protein level in a dose-dependent manner. In contrast, SG dose-dependently increased tissue inhibitors of MMP (TIMP)-1 production in fibroblasts. SG increased type I collagen production directly and/or indirectly by reducing MMP-1 and stimulating TIMP-1 production in human dermal fibroblasts. SG dose-dependently induced fibroblast proliferation and this, in turn, can trigger more collagen production. These results suggest that SG may be a potential pharmacological agent with anti-aging properties in cultured human skin fibroblast.

Efficient Gene Delivery through the Human Transferrin Receptor of Fibroblast-like Synoviocytes Stimulated with bFGF: a Potential Target Receptor for Gene Transduction in Rheumatoid Arthritis

  • Kim, Hak-Jae;Joung, In-Sil;Nah, Seong-Su;Lee, Kyu-Hoon;KimKwon, Yun-Hee;Chung, Joo-Ho;Hong, Seung-Jae
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2007
  • Efficient gene delivery to specific tissues, such as inflammatory and cancerous tissues, is currently a major concern in disease treatment. The human transferrin receptor (hTR) has been detected in the synovium and fibroblast-like synoviocytes (FLS), which raises the possibility that expression of hTR is associated with the pathogenesis of rheumatoid arthritis (RA). To investigate whether the hTR is a useful target for gene transduction into the FLS of RA patients, recombinant adenoviruses with wildtype fiber (AdLac) and transferrin peptide-tagged fiber (Tf-AdLac) were used. The hTR expression level in FLS was notably increased by basic fibroblast growth factor (bFGF). Gene transduction to FLS was significantly higher by the hTR-targeted adenovirus than by the AdLac adenovirus, and treatment of the FLS with bFGF resulted in increased gene transduction by Tf-AdLac. Taken together, these data support Tf-AdLac as a new strategy for gene transduction in the treatment of RA patients.