Browse > Article
http://dx.doi.org/10.5806/AST.2014.27.1.27

Preparation of cross-linked silk fibroin film by γ-irradiation and their application as supports for human cell culture  

Park, Hyean-Yeol (Department of Chemistry, Hannam University)
Kim, Yoon-Seob (Department of Chemistry, Hannam University)
Choi, Seong-Ho (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.27, no.1, 2014 , pp. 27-33 More about this Journal
Abstract
This study described about preparation of the cross-linked silk fibroin (SF) film by ${\gamma}$-irradiation of the casted SF film, which is fabricated from aqueous solution regenerated via fibers of cocoons and their application as supports for human cell culture. The properties of cross-linked SF film were evaluated by FT-IR spectroscopy, contact angle, solubility to water, thermal analysis, surface area analyzer, and morphology via scanning electron microscopy (SEM). The cross-linked SF films were not dissolved in water and exhibited the rough surface morphology, large surface area, and good thermal properties. The human fibroblast cell (CCD-986sk) and embryo kidney-ft cell were well growed on the surface of cross-linked SF film supports prepared by ${\gamma}$-irradiation. The cross-linked SF film prepared by ${\gamma}$-irradiation can be used as biomaterials for human cell culture.
Keywords
cross-linked silk fibroin film; ${\gamma}$-Irradiation; human cell culture; human fibroblast cell; human embryo kidney-ft cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wang, H. J. Kim, G. Vunjak-Novakovic and D. L. Kaplan, Biomaterials, 27(36), 6064-6082 (2006).   DOI   ScienceOn
2 Z. Cao, X. Chen, J. Yao, L. Huang and Z. Shao, Soft Matter, 3(7), 910-915 (2007).   DOI   ScienceOn
3 H. J. Jin and D. L. Kaplan, Nature, 424(6952), 1057-1061 (2003).   DOI   ScienceOn
4 J. Ming and B. Auo, Polym. Eng. Sci., 54(1), 129-136 (2014).   DOI   ScienceOn
5 G. Yang, L. Zhang and Y. Liu, J. Membr. Sci., 177(1-2), 153-161 (2000).   DOI   ScienceOn
6 A. Sionkowska and A. Plaecka, J. Mol. Liq., 178, 5-14 (2013).   DOI   ScienceOn
7 J. Kundu, L. A. Poole-warren, P. Martens and S. C. Kundu, Acta Biomater, 8(5), 1720-1729 (2012).   DOI   ScienceOn
8 E. S. Gio and S. M. Hudson, Biomacromolecules, 8(1), 258-264 (2007).   DOI   ScienceOn
9 H. Y. Kweon, S. H. Park and J. H. Yeo, J. Appl. Polym. Sci., 80(10), 1848-1853 (2001).   DOI   ScienceOn
10 K. Kesenci, A. Motta, L. Fambri and C. Migliaresi, J. Biomater. Sci., Polym. Ed., 12(3), 337-351 (2001).   DOI   ScienceOn
11 K. Y. Lee, FIBER POLYM, 2, 71-74 (2001).   DOI   ScienceOn
12 P. Petrini, C. Parolari and M. C. Tanzi, J. Mater. Sci.: Mater. Med., 12(10-12), 849-853 (2001).   DOI
13 Y. Tsuboi, T. Ikejiri, S. Shiga, K. Yamada and A. Itaya, Appl. Phys. A: Mater. Sci. Process., 73(5), 637-640 (2001).   DOI
14 P. J. Kim UJ, H. J. Kim, M. Wada and D. L. Kaplan, Biomaterials, 26, 2775-2785 (2005).   DOI   ScienceOn
15 Q. Lu, X. Hu, X. Wang, J. A. Kluge, S. Lu, P. Cebe and D. L. Kaplan, Acta Biomater, 6(4), 1380-1387 (2010).   DOI   ScienceOn
16 B. B. Mandal, S. Kapoor and S. C. Kundu, Biomaterials, 30(14), 2826-2836 (2009).   DOI   ScienceOn
17 G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond and D. L. Kaplan, Biomaterials, 24(3), 401-416 (2003).   DOI   ScienceOn