• Title/Summary/Keyword: Human Error Prediction

Search Result 93, Processing Time 0.024 seconds

Improving data reliability on oligonucleotide microarray

  • Yoon, Yeo-In;Lee, Young-Hak;Park, Jin-Hyun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.107-116
    • /
    • 2004
  • The advent of microarray technologies gives an opportunity to moni tor the expression of ten thousands of genes, simultaneously. Such microarray data can be deteriorated by experimental errors and image artifacts, which generate non-negligible outliers that are estimated by 15% of typical microarray data. Thus, it is an important issue to detect and correct the se faulty probes prior to high-level data analysis such as classification or clustering. In this paper, we propose a systematic procedure for the detection of faulty probes and its proper correction in Genechip array based on multivariate statistical approaches. Principal component analysis (PCA), one of the most widely used multivariate statistical approaches, has been applied to construct a statistical correlation model with 20 pairs of probes for each gene. And, the faulty probes are identified by inspecting the squared prediction error (SPE) of each probe from the PCA model. Then, the outlying probes are reconstructed by the iterative optimization approach minimizing SPE. We used the public data presented from the gene chip project of human fibroblast cell. Through the application study, the proposed approach showed good performance for probe correction without removing faulty probes, which may be desirable in the viewpoint of the maximum use of data information.

  • PDF

Development of a Leading Performance Indicator from Operational Experience and Resilience in a Nuclear Power Plant

  • Nelson, Pamela F.;Martin-Del-Campo, Cecilia;Hallbert, Bruce;Mosleh, Ali
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.114-128
    • /
    • 2016
  • The development of operational performance indicators is of utmost importance for nuclear power plants, since they measure, track, and trend plant operation. Leading indicators are ideal for reducing the likelihood of consequential events. This paper describes the operational data analysis of the information contained in the Corrective Action Program. The methodology considers human error and organizational factors because of their large contribution to consequential events. The results include a tool developed from the data to be used for the identification, prediction, and reduction of the likelihood of significant consequential events. This tool is based on the resilience curve that was built from the plant's operational data. The stress is described by the number of unresolved condition reports. The strain is represented by the number of preventive maintenance tasks and other periodic work activities (i.e., baseline activities), as well as, closing open corrective actions assigned to different departments to resolve the condition reports (i.e., corrective action workload). Beyond the identified resilience threshold, the stress exceeds the station's ability to operate successfully and there is an increased likelihood that a consequential event will occur. A performance indicator is proposed to reduce the likelihood of consequential events at nuclear power plants.

Improving Web Service Recommendation using Clustering with K-NN and SVD Algorithms

  • Weerasinghe, Amith M.;Rupasingha, Rupasingha A.H.M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1708-1727
    • /
    • 2021
  • In the advent of the twenty-first century, human beings began to closely interact with technology. Today, technology is developing, and as a result, the world wide web (www) has a very important place on the Internet and the significant task is fulfilled by Web services. A lot of Web services are available on the Internet and, therefore, it is difficult to find matching Web services among the available Web services. The recommendation systems can help in fixing this problem. In this paper, our observation was based on the recommended method such as the collaborative filtering (CF) technique which faces some failure from the data sparsity and the cold-start problems. To overcome these problems, we first applied an ontology-based clustering and then the k-nearest neighbor (KNN) algorithm for each separate cluster group that effectively increased the data density using the past user interests. Then, user ratings were predicted based on the model-based approach, such as singular value decomposition (SVD) and the predictions used for the recommendation. The evaluation results showed that our proposed approach has a less prediction error rate with high accuracy after analyzing the existing recommendation methods.

Analysis and Sampling Design for Occupational Employment Statistics (산업.직업별 고용구조 분석 및 표본설계)

  • Ryu, Jea-Bok;Son, Chang-Kyoon;Park, Sang-Hyun;Nam, Ki-Seong;Lee, Gi-Sung
    • Survey Research
    • /
    • v.8 no.2
    • /
    • pp.91-115
    • /
    • 2007
  • OES survey as the national official statistics aims to provide the basic data for the national labor market policy and research such as the basic statistics for human resource supply policy, the prediction of employment by occupations, the decision of occupation, the occupational training and the finding jobs et al., at the levels of industrial and occupational classifications(3-digit). In order to achieve this objective, we analyze the OES data in 2005 and 2006 and propose the new sampling design using the long form data in Korea (10% sample data of census 2005). In this paper, we provide the criterion of sample allocation and derive the formular for estimator and error of it including the weighting procedure. From the proposed sampling design, we would expect that it contributes to the supply policy of human resource and the research for labor market.

  • PDF

Prediction of Landslide Using Artificial Neural Network Model (인공신경망모델을 이용한 산사태 예측)

  • 홍원표;김원영;송영석;임석규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.67-75
    • /
    • 2004
  • The landslide is one of the most significant natural disasters, which cause a lot of loss of human lives and properties. The landslides in natural slopes generally occur by complicated problems such as soil properties, topography, and geology. Artificial Neural Network (ANN) model is efficient computing technique that is widely used to solve complicated problems in many research fields. In this paper, the ANN model with application of error back propagation method was proposed for estimation of landslide hazard in natural slope. This model can evaluate the possibility of landslide hazard with two different approaches: one considering only soil properties; the other considering soil properties, topography, and geology. In order to evaluate reasonably the landslide hazard, the SlideEval (Ver, 1.0) program was developed using the ANN model. The evaluation of slope stability using the ANN model shows a high accuracy. Especially, the prediction of landslides using the ANN model gives more stable and accurate results in the case of considering such factors as soil, topographic and geological properties together. As a result of comparison with the statistical analysis(Korea Institute of Geosciences and Mineral Resources, 2003), the analysis using the ANN model is approximately equal to the statistical analysis. Therefore, the SlideEval (Ver. 1.0) program using ANN model can predict landslides hazard and estimate the slope stability.

Predicting Sensitivity of Motion Sickness using by Pattern of Cardinal Gaze Position (기본 주시눈 위치의 패턴을 이용한 영상멀미의 민감도 예측)

  • Park, Sangin;Lee, Dong Won;Mun, Sungchul;Whang, Mincheol
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.227-235
    • /
    • 2018
  • The aim of this study is to predict the sensitivity of motion sickness (MS) using pattern of cardinal gaze position (CGP) before experiencing the virtual reality (VR) content. Twenty volunteers of both genders (8 females, mean age $28.42{\pm}3.17$) participated in this experiment. They was required to measure the pattern of CGP for 5 minute, and then watched VR content for 15 minute. After watching VR content, subjective experience for MS reported from participants using by 'Simulator Sickness Questionnaire (SSQ)'. Statistical significance between CGP and SSQ score were confirmed using Pearson correlation analysis and independent t-test, and prediction model was extracted from multiple regression model. PCPA & PCPR indicators from CGP revealed significantly difference and strong or moderate positive correlation with SSQ score. Extracted prediction model was tested using correlation coefficient and mean error, SSQ score between subjective rating and prediction model showed strong positive correlation and low difference.

Early Prediction of Fine Dust Concentration in Seoul using Weather and Fine Dust Information (기상 및 미세먼지 정보를 활용한 서울시의 미세먼지 농도 조기 예측)

  • HanJoo Lee;Minkyu Jee;Hakdong Kim;Taeheul Jun;Cheongwon Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Recently, the impact of fine dust on health has become a major topic. Fine dust is dangerous because it can penetrate the body and affect the respiratory system, without being filtered out by the mucous membrane in the nose. Since fine dust is directly related to the industry, it is practically impossible to completely remove it. Therefore, if the concentration of fine dust can be predicted in advance, pre-emptive measures can be taken to minimize its impact on the human body. Fine dust can travel over 600km in a day, so it not only affects neighboring areas, but also distant regions. In this paper, wind direction and speed data and a time series prediction model were used to predict the concentration of fine dust in Seoul, and the correlation between the concentration of fine dust in Seoul and the concentration in each region was confirmed. In addition, predictions were made using the concentration of fine dust in each region and in Seoul. The lowest MAE (mean absolute error) in the prediction results was 12.13, which was about 15.17% better than the MAE of 14.3 presented in previous studies.

A Case Study on Forecasting Inbound Calls of Motor Insurance Company Using Interactive Data Mining Technique (대화식 데이터 마이닝 기법을 활용한 자동차 보험사의 인입 콜량 예측 사례)

  • Baek, Woong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.99-120
    • /
    • 2010
  • Due to the wide spread of customers' frequent access of non face-to-face services, there have been many attempts to improve customer satisfaction using huge amounts of data accumulated throughnon face-to-face channels. Usually, a call center is regarded to be one of the most representative non-faced channels. Therefore, it is important that a call center has enough agents to offer high level customer satisfaction. However, managing too many agents would increase the operational costs of a call center by increasing labor costs. Therefore, predicting and calculating the appropriate size of human resources of a call center is one of the most critical success factors of call center management. For this reason, most call centers are currently establishing a department of WFM(Work Force Management) to estimate the appropriate number of agents and to direct much effort to predict the volume of inbound calls. In real world applications, inbound call prediction is usually performed based on the intuition and experience of a domain expert. In other words, a domain expert usually predicts the volume of calls by calculating the average call of some periods and adjusting the average according tohis/her subjective estimation. However, this kind of approach has radical limitations in that the result of prediction might be strongly affected by the expert's personal experience and competence. It is often the case that a domain expert may predict inbound calls quite differently from anotherif the two experts have mutually different opinions on selecting influential variables and priorities among the variables. Moreover, it is almost impossible to logically clarify the process of expert's subjective prediction. Currently, to overcome the limitations of subjective call prediction, most call centers are adopting a WFMS(Workforce Management System) package in which expert's best practices are systemized. With WFMS, a user can predict the volume of calls by calculating the average call of each day of the week, excluding some eventful days. However, WFMS costs too much capital during the early stage of system establishment. Moreover, it is hard to reflect new information ontothe system when some factors affecting the amount of calls have been changed. In this paper, we attempt to devise a new model for predicting inbound calls that is not only based on theoretical background but also easily applicable to real world applications. Our model was mainly developed by the interactive decision tree technique, one of the most popular techniques in data mining. Therefore, we expect that our model can predict inbound calls automatically based on historical data, and it can utilize expert's domain knowledge during the process of tree construction. To analyze the accuracy of our model, we performed intensive experiments on a real case of one of the largest car insurance companies in Korea. In the case study, the prediction accuracy of the devised two models and traditional WFMS are analyzed with respect to the various error rates allowable. The experiments reveal that our data mining-based two models outperform WFMS in terms of predicting the amount of accident calls and fault calls in most experimental situations examined.

Analysis of Ultimate Bearing Capacity of Piles Using Artificial Neural Networks Theory (I) -Theory (인공 신경망 이론을 이용한 말뚝의 극한지지력 해석(I)-이론)

  • 이정학;이인모
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-28
    • /
    • 1994
  • It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basic of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully. In this study, error back propagation algorithm which is one of the teaching technique of artificial neural networks is applied to predict ultimate bearing capacity of pile foundations. For the verification of applicability of this system, a total of 28 data of model pile test results are used. The 9, 14 and 21 test data respectively out of the total 28 data are used for training the networks, and the others are used for the comparison between the predicted and the measured. The results show that the developed system can provide a good matching with model pile test results by training with data more than 14. These limited results show the possibility of utilizing the neural networks for pile capacity prediction problems.

  • PDF

Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer (중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증)

  • Byon, Jae-Young;Kim, Jiyoung;Choi, Byoung-Cheol;Choi, Young-Jean
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.