• Title/Summary/Keyword: Human Clone

Search Result 174, Processing Time 0.023 seconds

Molecular Cloning, Characterization, and Expression Analysis of Chicken Δ-6 Desaturase

  • Kang, Xiangtao;Bai, Yichun;Sun, Guirong;Huang, Yanqun;Chen, Qixin;Han, Ruili;Li, Guoxi;Li, Fadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.116-121
    • /
    • 2010
  • Long-chain polyunsaturated fatty acids (LC-PUFA) promote the development of brain and vision of the fetus, relieve inflammation, inhibit oral dysplasia of rumor cell, decrease the incidence of cardiovascular disease and regulate arrhythmia. ${\Delta}-6$ desaturase is the rate-limited enzyme in the desaturation process. This study reports the cloning, characterization and tissue expression of a ${\Delta}-6$ desaturase gene in the chicken. PCR primers were designed based on the predicted sequence of chicken ${\Delta}-6$ desaturase (accession number: XM421053) and used to isolate a cDNA fragment of 1,323 bp from chicken liver. Based on the 1,323 bp fragment an EST (BI390105) was obtained by BLAST. The EST and 5'nd of the 1,323 bp fragment were partially overlapped. Gene specific primers derived from the EST were used for amplification of the 5'nd. Another gene-specific primer derived from the 1,323 bp fragment was used for amplification of the 3'nd by 3'ACE. Then the three overlapping cDNA sequences obtained were assembled with DNAMAN software and a full-length ${\Delta}-6$ desaturase of 2,153 bp was obtained. The full-length cDNA contained an ORF of 1,335 bp with a 5'ntranslated region of 147 nucleotides followed by an ATG initiation codon. Stop codon TGA was at position 1,481-1,483 bp. The deduced amino acids shared an homology above 77% with bovine, mice, orangutan, rat and human. The protein sequence had three histidine-rich regions HDFGH (HisI region), HFQHH (HisII region) and HH (HisIII region), a cytochrome $b_{5}$-like domain containing a heme-binding motif and two transmembrane domains. Sequence analysis of the chicken genomic DNA revealed that the coding sequence of chicken ${\Delta}-6$ desaturase included 12 exons and 11 introns. Semi-quantitative RT-PCR showed that the ${\Delta}-6$ desaturase expression levels were in turn liver, spleen, pancreas, lung, breast muscle, heart, and abdominal fat. The expression of ${\Delta}-6$ desaturase in liver was significantly higher than that in breast muscle (p<0.01). The expression of ${\Delta}-6$ desaturase in lung was significantly higher than that in abdominal fat (p<0.01). This is the first clone of chicken ${\Delta}-6$ desaturase.

Pharmacologic Inhibition of Autophagy Sensitizes Human Acute Leukemia Jurkat T Cells to Acacetin-Induced Apoptosis

  • Lee, Ji Young;Jun, Do Youn;Kim, Ki Yun;Ha, Eun Ji;Woo, Mi Hee;Ko, Jee Youn;Yun, Young Ho;Oh, In-Seok;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.197-205
    • /
    • 2017
  • Exposure of Jurkat T cell clone (J/Neo cells) to acacetin (5,7-dihydroxy-4'-methoxyflavone), which is present in barnyard millet (Echinochloa esculenta (A. Braun)) grains, caused cytotoxicity, enhancement of apoptotic $sub-G_1$ rate, Bak activation, loss of mitochondrial membrane potential (${\Delta}{\Psi}m$), activation of caspase-9 and caspase-3, degradation of poly(ADP-ribose) polymerase, and FITC-Annexin V-stainable phosphatidylserine exposure on the external surface of the cytoplasmic membrane without accompanying necrosis. These apoptotic responses were abrogated in Jurkat T cell clone (J/Bcl-xL) overexpressing Bcl-xL. Under the same conditions, cellular autophagic responses, including suppression of the Akt-mTOR pathway and p62/SQSTM1 down-regulation, were commonly detected in J/Neo and J/Bcl-xL cells; however, formation of acridine orange-stainable acidic vascular organelles, LC3-I/II conversion, and Beclin-1 phosphorylation (Ser-15) were detected only in J/Neo cells. Correspondingly, concomitant treatment with the autophagy inhibitor (3-methyladenine or LY294002) appeared to enhance acacetin-induced apoptotic responses, such as Bak activation, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and apoptotic $sub-G_1$ accumulation. This indicated that acacetin could induce apoptosis and cytoprotective autophagy in Jurkat T cells simultaneously. Together, these results demonstrate that acacetin induces not only apoptotic cell death via activation of Bak, loss of ${\Delta}{\Psi}m$, and activation of the mitochondrial caspase cascade, but also cytoprotective autophagy resulting from suppression of the Akt-mTOR pathway. Furthermore, pharmacologic inhibition of the autophagy pathway augments the activation of Bak and resultant mitochondrial damage-mediated apoptosis in Jurkat T cells.

Effects of PEGylated scFv Antibodies against Plasmodium vivax Duffy Binding Protein on the Biological Activity and Stability In Vitro

  • Kim, So-Hee;Lee, Yong-Seok;Hwang, Seung-Young;Bae, Gun-Won;Nho, Kwang;Kang, Se-Won;Kwak, Yee-Gyung;Moon, Chi-Sook;Han, Yeon-Soo;Kim, Tae-Yun;Kho, Weon-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1670-1674
    • /
    • 2007
  • Duffy binding protein (DBP) plays a critical role in Plasmodium vivax invasion of human red blood cells. We previously reported a single-chain antibody fragment (scFv) that was specific to P. vivax DBP (PvDBP). However, the stabilization and the half-life of scFvs have not been studied. Here, we investigated the effect of PEGylated scFvs on their biological activity and stability in vitro. SDS-PAGE analysis showed that three clones (SFDBII-12, -58, and -92) were formed as monomers (about 70 kDa) with PEGylation. Clone SFDBII-58 gave the highest yield of PEGylated scFv. Binding analysis using BIAcore between DBP and scFv showed that both SFDBII-12 and -58 were decreased approximately by two folds at the level of binding affinity to DBP after PEGylation. However, the SFDBII-92 clone still showed a relatively high level of binding affinity ($K_D=1.02{\times}10^{-7}\;M$). Binding inhibition assay showed that PEGylated scFv was still able to competitively bind the PvDBP and playa critical role in inhibiting the interactions between PvDBP protein expressed on the surface of Cos-7 cells and Duffy receptor on the surface of erythrocytes. When both scFvs and their PEGylated counterparts were exposed to trypsin, scFv was completely degraded only after 24 h, whereas 35% of PEGylated scFvs remained intact, maintaining their stability against the proteolytic attack of trypsin until 72 h. Taken together, these results suggest that the PEGylated scFvs retain their stability against proteolytic enzymes in vivo, with no significant loss in their binding affinity to target antigen, DBP.

Skin Whitening and Skin Immune Activities of Different Parts of Acer mono and Acer okamotoanum (고로쇠 및 우산고로쇠나무의 부위별 미백 및 피부면역 활성)

  • Jeong, Myoung-Hoon;Kim, Seung-Seop;Kim, Ji-Seon;Lee, Hak-Ju;Chio, Geun-Pyo;Lee, Hyeon-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.470-478
    • /
    • 2010
  • UV-protection skin whitening and immune activities several parts of Acer mono and Acer okamotoanum were investigated. The bark of both Acer mono and Acer okamotoanum had higher yields than other parts as 2.67% and 2.45%. The cytotoxicity of the extracts were lower than 21.64% against human skin cell(CCD-986sk) line in adding 1.0 mg/mL of the highest concentration. The bark extracts of Acer mono greatly reduced the expression of MMP-1 on UV-irradiated CCD-986sk cells down to as 30%. At 1.0 mg/mL of bark extration of Acer mono, $PGE_2$ expression was also significantly decreased. Generally, the bark extracts of Acer mono and Acer okamotoanum had higher activity than other parts, but, interestingly, wood extract of Acer okamotoanum showed strong inhibition effect on melanin production by Clone-M3 cells as 79.25%. From these results, we could conclude that the bark extract from Acer mono and Acer okamotoanum had skin-whitening activity as well immune enhancement activity.

Nuclear Transfer using Human CD59 and IL-18BP Double Transgenic Fetal Fibroblasts in Miniature Pigs

  • Ryu, Junghyun;Kim, Minjeong;Ahn, Jin Seop;Ahn, Kwang Sung;Shim, Hosup
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Xenotransplantation involves multiple steps of immune rejection. The present study was designed to produce nuclear transfer embryos, prior to the production of transgenic pigs, using fibroblasts carrying transgenes human complement regulatory protein hCD59 and interleukin-18 binding protein (hIL-18BP) to reduce hyperacute rejection (HAR) and cellular rejection in pig-to-human xenotransplantation. In addition to the hCD59-mediated reduction of HAR, hIL-18BP may prevent cellular rejection by inhibiting the activation of natural killer cells, activated T-cell proliferation, and induction of $IFN-{\gamma}$. Transgene construct including hCD59 and ILI-18BP was introduced into miniature pig fetal fibroblasts. After antibiotic selection of double transgenic fibroblasts, integration of the transgene was screened by PCR, and the transgene expression was confirmed by RT-PCR. Treatment of human serum did not affect the survival of double-transgenic fibroblasts, whereas the treatment significantly reduced the survival of non-transgenic fibroblasts (p<0.01), suggesting alleviation of HAR. Among 337 reconstituted oocytes produced by nuclear transfer using the double transgenic fibroblasts, 28 (15.3%) developed to the blastocyst stage. Analysis of individual embryos indicated that 53.6% (15/28) of embryos contained the transgene. The result of the present study demonstrates the resistance of hCD59 and IL-18BP double-transgenic fibroblasts against HAR, and the usefulness of the transgenic approach may be predicted by RT-PCR and cytolytic assessment prior to actual production of transgenic pigs. Further study on the transfer of these embryos to surrogates may produce transgenic clone miniature pigs expressing hCD59 and hIL-18BP for xenotransplantation.

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Human Embryonic Stem Cells Co-Transfected with Tyrosine Hydroxylase and GTP Cyclohydrolase I Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • Kil, Kwang-Soo;Lee, Chang-Hyun;Shin, Hyun-Ah;Cho, Hwang-Yoon;Yoon, Ji-Yeon;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.101-101
    • /
    • 2003
  • Main strategy for a treatment of Parkinson's disease (PD), due to a progressive degeneration of dopaminergic neurons, is a pharmaceutical supplement of dopamine derivatives or ceil replacement therapy. Both of these protocols have pros and cons; former exhibiting a dramatic relief but causing a severe side effects on long-term prescription and latter also having a proven effectiveness but having availability and ethical problems Embryonic stem (ES) cells have several characteristics suitable for this purpose. To investigate a possibility of using ES cells as a carrier of therapeutic gene(s), human ES (hES, MB03) cells were transfected with cDNAs coding for tyrosine hydroxylase (TH) in pcDNA3.1 (+) and the transfectants were selected using neomycin (250 $\mu /ml$). Expression of TH being confirmed, two of the positive clone (MBTH2 & 8) were second transfected with GTP cyclohydrolase 1 (GTPCH 1) in pcDNA3.1 (+)-hyg followed by selection with hygromycin-B (150 $\mu /ml$) and RT-PCR confirmation. By immune-cytochemistry, these genetically modified but undifferentiated dual drug-resistant cells were found to express few of the neuronal markers, such as NF200, $\beta$-tubulin, and MAP2 as well as astroglial marker GFAP. This results suggest that over-production of BH4 by ectopically expressed GTPCH I may be involved in the induction of those markers. Transplantation of the cells into striatum of 6-OHDA- denervated PD animal model relieved symptomatic rotational behaviors of the animals. Immunohistochemical analyses showed the presence of human cells within the striatum of the recipients. These results suggest a possibility of using hES cells as a carrier of therapeutic gene(s).

  • PDF

The Uptake of 2-deoxy-D-glucose (2dGlc) by the Endogenous Sugar Transporter(s) of Spodoptera frugiperda Clone 21-AE Cells and the Inhibition of 2dGIc Transport in the Insect Cells by Fructose and Cytoc halasin B

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.177-181
    • /
    • 2003
  • The baculovirus/Spodoptera frugiperda (Sf) cell system has become popular for the production of large amounts of the human erythrocyte glucose transporter, GLUT1, heterologously. However, it was not possible to show that the expressed transporter in insect cells could actually transport glucose. The possible reason for this was that the activity of the endogenous insect glucose transporter was extremely high and so rendered transport activity resulting from the expression of exogenous transporter very difficult to detect. Sf21-AE cells are commonly employed as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains 0.1 % D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike the human glucose transporter, very little is known about properties of the endogenous sugar transporter(s) in insect cells. Thus, the uptake of 2-deoxy-D-glucose (2dGlc) by Sf21-AE cells and the inhibition of 2dGlc transport in the insect cells by fructose and cytochalasin B were investigated in the present work. The binding assay of cytochalasin B was also performed, which could be used as a functional assay for the endogenous glucose transporter(s) in the insect cells. Sf21-AE cells were infected with the recombinant virus AcNPV-GT or no virus, at a multiplicity of infection (MOI) of 5. Infected cells were resuspended in PBS plus and minus 300 mM fructose, and plus and minus 20 $\mu$M cytochalasin B for use in transport assays. Uptake was measured at 28$^{\circ}C$ for 1 min, with final concentration of 1 mM deoxy-D-glucose, 2-[1,2-$^3$H]- or glucose, L-[l,$^3$H]-, used at a specific radioactivity of 4 Ci/mol. The results obtained demonstrated that the sugar uptake in uninfected cells was stereospecific, and was strongly inhibited by fructose but only poorly inhibitable by cytochalasin B. It is therefore suggested that the Sf21-AE glucose transporter has very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Genomic DNA Chip: Genome-wide profiling in Cancer

  • 이종호
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.61-86
    • /
    • 2001
  • All cancers are caused by abnormalities in DNA sequence. Throughout life, the DNA in human cells is exposed to mutagens and suffers mistakes in replication, resulting in progressive, subtle changes in the DNA sequence in each cell. Since the development of conventional and molecular cytogenetic methods to the analysis of chromosomal aberrations in cancers, more than 1,800 recurring chromosomal breakpoints have been identified. These breakpoints and regions of nonrandom copy number changes typically point to the location of genes involved in cancer initiation and progression. With the introduction of molecular cytogenetic methodologies based on fluorescence in situ hybridization (FISH), namely, comparative genomic hybridization (CGH) and multicolor FISH (m-FISH) in carcinomas become susceptible to analysis. Conventional CGH has been widely applied for the detection of genomic imbalances in tumor cells, and used normal metaphase chromosomes as targets for the mapping of copy number changes. However, this limits the mapping of such imbalances to the resolution limit of metaphase chromosomes (usually 10 to 20 Mb). Efforts to increase this resolution have led to the "new"concept of genomic DNA chip (1 to 2 Mb), whereby the chromosomal target is replaced with cloned DNA immobilized on such as glass slides. The resulting resolution then depends on the size of the immobilized DNA fragments. We have completed the first draft of its Korean Genome Project. The project proceeded by end sequencing inserts from a library of 96,768 bacterial artificial chromosomes (BACs) containing genomic DNA fragments from Korean ethnicity. The sequenced BAC ends were then compared to the Human Genome Project′s publicly available sequence database and aligned according to known cancer gene sequences. These BAC clones were biotinylated by nick translation, hybridized to cytogenetic preparations of metaphase cells, and detected with fluorescein-conjugated avidin. Only locations of unique or low-copy Portions of the clone are identified, because high-copy interspersed repetitive sequences in the probe were suppressed by the addition of unlabelled Cotl DNA. Banding patterns were produced using DAPI. By this means, every BAC fragment has been matched to its appropriate chromosomal location. We have placed 86 (156 BAC clones) cytogenetically defined landmarks to help with the characterization of known cancer genes. Microarray techniques would be applied in CGH by replacement of metaphase chromosome to arrayed BAC confirming in oncogene and tumor suppressor gene: and an array BAC clones from the collection is used to perform a genome-wide scan for segmental aneuploidy by array-CGH. Therefore, the genomic DNA chip (arrayed BAC) will be undoubtedly provide accurate diagnosis of deletions, duplication, insertions and rearrangements of genomic material related to various human phenotypes, including neoplasias. And our tumor markers based on genetic abnormalities of cancer would be identified and contribute to the screening of the stage of cancers and/or hereditary diseases

  • PDF

Cloning and Characterization of BTG-1 Gene from Pacific Oyster (Crassostrea gigas) (참굴(Crassostrea gigas)의 BTG1 유전자의 특성)

  • Chung, In Young;Oh, Jeong Hwan;Song, Young Hwan
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.398-407
    • /
    • 2017
  • BTG 1 (B-cell translocation gene 1) gene was first identified as a translocation gene in a case of B-cell chronic lympocytic leukemia. BTG1 is a member of the BTG/TOB family with sharing a conserved N-terminal region, which shows anti-proliferation properties and is able to stimulate cell differentiation. In this study, we identified and characterized the pacific oyster Crassostrea gigas BTG1 (cg-BTG1) gene from the gill cDNA library by an Expressed Sequence Tag (EST) analysis and its nucleotide sequence was determined. The cg-BTG1 gene encodes a predicted protein of 182 amino acids with 57% 56% identities to its zebrafish and human counterparts, and is an intron-less gene, which was confirmed by PCR analysis of genomic DNA. Maximal homologies were shown in conserved Box A and B. The deduced amino acid sequence shares high identity with other BTG1 genes of human, rat, mouse and zebrafish. The phylogenic analysis and sequence comparison of cg-BTG1 with other BTG1 were found to be closely related to the BTG1 gene structure. In addition, the predicted promoter region and the different transcription-factor binding site like an activator protein-1 (AP-1) response element involved in negative regulation and serum response element (SRE) were able to be identified by the genomic DNA walking experiment. The quantitative real-time PCR analysis showed that the mRNA of cg-BTG1 gene was expressed in gill, heart, digestive gland, intestine, stomach and mantle. The cg-BTG1 gene was expressed mainly in heart and mantle.