• Title/Summary/Keyword: Hull material

Search Result 195, Processing Time 0.029 seconds

Ultimate Strength Assessment of Ship Stiffened Panel under Arctic Conditions (극지환경을 고려한 선체보강판 구조의 최종강도 평가)

  • Kim, YangSeop;Park, DaeKyeom;Kim, SangJin;Lee, DongHun;Kim, BongJu;Ha, YeonChul;Seo, JungKan;Paik, JeomKee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.283-290
    • /
    • 2014
  • Environmental changes, especially global climate change, are creating new routes to reduce a shipping service distance in Arctic area. The Arctic routes are shorter than 60% of existing ways Panama or Suez canal). For this reason, ship owners prefer to navigate in Arctic area and a transportation of goods though the Arctic area is increasing. But the low temperature in Arctic condition changes the material properties. Especially, the material will be brittle and strength will increase. And an ultimate strength analysis of ship stiffened panels is changed depending on temperatures. In present study, the ultimate strength analysis of stiffened panels in double hull oil tankers is performed under various low temperatures with the material properties obtained by tensile coupon test. The analytical method as named ALPS/ULSAP was used for analysis method and 6 kinds of temperature (20, 0, -20, -40, -60 and $-80^{\circ}C$) were considered to investigate the effect of Arctic conditions.

The Use of Lupins in Feeding Systems - Review -

  • Petterson, D.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.861-882
    • /
    • 2000
  • The seed, or grain, of modern cultivars of Lupinus angustifolius, commonly known as Australian sweet lupins (ASL), is an established feed resource for the intensive animal industries of Australia, Japan, Korea and several other countries in Asia and Europe. Since the introduction of ASL to the world marketplace about 25 years ago, researchers in many countries have found them to be a valuable component of the diet of beef and dairy cattle, sheep, pigs, poultry, finfish and crustaceans. The seed of ASL contains ~32% crude protein (CP) (~35% DM basis) and 5% oil. The main storage carbohydrates in the seed are the ${\beta}$-galactans that comprise most of the cell-wall material of the kernel and the cellulose and hemicellulose of the thick seed coats. ASL seeds contain about 40% non-starch polysaccharides (NSP) and a negligible amount of starch. This makes them an excellent ingredient for ruminant diets, as the risk of acidosis is very low. The seed of modern cultivars of domesticated Lupinus species contain negligible amounts of lectins and trypsin inhibitors so they do not require preheating before being used as an ingredient in feeds for monogastric species. They have a high digestibility coefficient for protein, >90% for most species, but a low energy digestibility, ~60%, which is mostly due to the high content of NSP. The low content of methionine (0.22%) and of lysine (1.46%) is typical of the legumes. The lysine availability for pigs is >70%. Lupin kernels contain ~39% CP (~42% DM basis), 6% oil and 30% NSP. They have a higher digestible energy for pigs and finfish and a higher metabolisable energy for poultry than whole seed. Commercial operations rarely achieve complete separation of kernel from hull and it is more likely that the kernel fraction, called splits or meats, will contain ~36% CP. The replacement of soybean meal or peas with ASL in cereal-based diets for most intensively reared animals, birds and fish is possible provided lysine, methionine and digestible energy levels are kept constant. This makes ASL economically competitive in many, but not all, circumstances.

The Cause Analysis of Pitting Corrosion on the Waterjet Impeller (물분사 추진기 임펠러 부식에 대한 원인분석)

  • Lee, Hyeong-Sin;Jung, Un-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.545-551
    • /
    • 2020
  • Cause analysis of surface pitting crack on a waterjet impeller was conducted. The waterjet impeller was made from stainless steel duplex 2205, which is more resistant to corrosion and local corrosion than typical stainless steel 316L and 317L, and has high mechanical strength, making it a useful material in various marine structures and seawater desalination facilities. The measurements were taken by scanning electron microscopy (SEM) and molecular ecological detection. The chemical composition of S was examined by SEM in the area of pitting corrosion. The dsrAB gene was detected on the sample of the pitting corrosion of the impeller through molecular ecological detection. Therefore, pitting corrosion on the surface of a waterjet impeller was caused by sulphite-reducing bacteria (SRB). To prevent the spread of SRB, management is required through high temperature treatments (over 65℃), pH management, or the insulation of a hull and waterjet.

Production of Soluble Dietary Fiber of Buckwheat Hulls by Enzymatic Depolymerzation and its Characteristics (메밀껍질의 효소분해에 의한 수용성 식품섬유소의 생산 및 기능적 특성)

  • Im, Hee Jin;Park, Bo Yeon;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.97-103
    • /
    • 2016
  • This study was conducted for the production of water-soluble dietary fiber (SDF) from buckwheat hulls by using Celluclast or Viscozyme. The functionality of this SDF, including antioxidant activity, glucose- and bile acid-retardation effects in vitro, was measured. SDF yields from cellulose and hemicellulose fractions were 60.5 and 123.7 g/kg dry matter, respectively. Analysis of molecular weight distribution of SDF by using gel chromatography showed that SDF degradation increased with increase in reaction time. The antioxidant activity of SDF obtained by enzymatic hydrolysis was higher than that of dietary fiber without enzyme treatment. SDF showed higher retardation effects on glucose and bile acid than the sample without dietary fiber did. The results of this study suggested that SDF produced from buckwheat hull by enzymatic hydrolysis is a good source of functional food material because of its high antioxidant activity and glucose- and bile acid-retardation effects.

Development of 33feet Class America's Cup Training CFRP Sailing Yacht for Marine and Leisure Applications (해양레저 분야 복합소재 적용 : 33피트급 아메리카스컵 훈련용 CFRP 세일링 요트 개발)

  • Seo, Hyoung-Seock;Jang, Ho-Yun;Lee, In-Won;Choi, Heung-Soap
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • The purpose of this paper is to investigate the current trends of composite applications in the marine and leisure fields and to study the development of 33ft class America's cup training CFRP sailing yacht. In the field of marine and leisure, composite materials have been just used to marine and leisure structures, recently. Especially, since the America's cup of sailing yacht racing has required the light weight and high mechanical performance to make a high speed, CFRP have been recognized as the critical material to construct the racing yacht structures. To establish the process of CFRP racing yacht construction, the design optimizations and production methods of carbon mast and CFRP yacht hull were discussed in this paper. Finally, the constructed CFRP sailing yacht exhibited high performance as the racing yacht through the sailing test.

[Retracted] The Effect of Welding Conditions on Tensile Characteristics and Thermal Stress of Al 5083 Alloy Applied to Co-environmental Leisure Ships ([논문 철회] 친환경 레져선박에 적용되는 Al 5083 합금의 인장특성 및 열응력에 미치는 용접조건의 영향)

  • Moon, Byung Young;Lee, Ki Yeol;Kim, Kyu Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.548-555
    • /
    • 2014
  • As a considerable, experimental approach, an Auto-carriage type of $CO_2$ welding machine and a MIG(Metal Inert Gas) welding robot under inert gas atmosphere were utilized in order to realize Al 5083 welding applied to hull and relevant components of green Al leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, non-ferrous material, applied to manufacturing of co-environmental Al leisure ships. With respect to welding condition to minimize the thermal deformation, 150A and 16V at the wire-feed rate of 6mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(Heat Affected Zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5mm thickness, 284.62MPa of tensile strength and 11.41% of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification(WPS).

Effect of Storage Temperature and Keeping Materials on Storability and Quality of Chinese Yam (貯藏溫度와 充塡材料가 마의 貯藏과 品質에 미치는 影響)

  • 김영광
    • Korean Journal of Plant Resources
    • /
    • v.10 no.1
    • /
    • pp.58-63
    • /
    • 1997
  • The experiment was done to clarify the effect of keeping material and storage temperature on weight and quality of Chinese yam (Dioscorea opposita) tuber. After the yam tubers were placed into the plastic boxes filled with different keeping materials [polyethylene (PE) film, hull, soil, sand, vermiculite], they were stored under different storage temperature(room, cold) from Oct. 15 to Mar. 15 when all the characters related to the tubers were measured. Soil or PE film as keeping materials was the lowest sound tuber rate when stored at room or cold temperature, respectively, while vermiculite was the highest in both storage temperature. When PE film and vermiculite in both storage temperatures were used as keeping materials, tuber weight were less reduced than the others. Brightness of chromaticity and moisture content were lower in room temperature storage than in cold temperature storage although the characteristics related to marketability were not affected by storage temperature. PE film had greater brightness and value 'a' of chromaticity but lower its 'b' value in the latter temperature than in the former temperature. Vermiculite, however, did the reverse result in comparison with PE film.

  • PDF

Effect of Capillary Barrier on Soil Salinity and Corn Growth at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Lee, Su-Hwan;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yul;Noh, Tae-Hwan;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.398-405
    • /
    • 2014
  • Salt accumulation at soil surface is one of the most detrimental factors for crop production in reclaimed tidal land. This study was conducted to investigate the effect of capillary barriers beneath the soil surface on dynamics of soil salts at coarse-textured reclaimed tidal land. A field experiment was conducted at Saemangeum reclaimed tidal land for two years (2012-2013). Capillary barriers ($3.5{\times}12m$) were treated with crushed-stone, oyster shell waste, coal briquette ash, coal bottom ash, rice hull and woodchip at 40-60 cm depth from soil surface. Silage corn (Zea mays) was cultivated during the experimental period and soil salinity was monitored periodically. Soil salinity was significantly reduced with capillary barrier compared to that of control. Oyster shell waste was one of the most effective capillary barrier materials to control soil salinity at Saemangeum reclaimed tidal land. At the first growing season capillary barrier did not influence on corn growth regardless of types of the material, but plant biomass and withering rate of corn were significantly improved with capillary barrier at the second growing season. The results of this study showed that capillary barrier was effective on the control of soil salinity and improvement of corn growth, which indicated that capillary barrier treatment can be considered one of the best management practices for stable crop production at Saemangeum reclaimed tidal land.

Development of Slender Doubler Plate Hybrid Design System for Ship Structure Subjected to Longitudinal In-plane Compression (종방향 면내 압축하중 하의 세장한 선박 이중판 하이브리드 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • In view of the importance of material reduction and rational structural design due to the rapid increase in oil and steel prices, an optimized structural hybrid design system for the doubler plate of a ship's hull structure was developed. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the first step of the doubler design system development, the design formulas used in doubler design system were introduced. Based on the introduction of influence coefficients $K_{t_c}$ $K_{t_d}$, $K_{b_d}$ and $K_{a_d}$ according to the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate, the design formulas for an equivalent plate thickness were developed, and a hybrid design system using these formulas was suggested for the slender doubler plate of a ship structure subjected to a longitudinal in-plane compression load. By using this developed design system, a more rational doubler plate design can be expected considering the efficient reinforcement of the plate members of ship structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for the doubler plate.

Development of the High-quality Coating System for the Steam Pipe of Ship (선박 스팀파이프용의 고내구성 도장 사양 개발 연구)

  • Lee, Sung-Kyun;Baek, Kwang-Ki;Hwang, Dong-Un;Song, Eun-Ha
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF