• Title/Summary/Keyword: Hull Surface

Search Result 461, Processing Time 0.021 seconds

A Study on The Construction of 3-Dimensional Edge Blend Surface Modeling (곡면 모델링에서 3차원 경계 곡면 블렌드 구성에 관한 연구)

  • 이창억
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 1994
  • It is very difficult to partially describe the hull shape made up of 3-dimensional free form surface. With computerizing skill in ship design, the geometric modeling technique has been developed. In hull shape modeling, the blending technique has not yet been adapted to the hull shape surface has a variable curvature. By adapting the blend surface, small surface on drawing plane is to be softly blended with given hull surface and a projecting part. This study has adapted to the ship design one of the blending methods by which offsets data of the blend surface can be obtained by the input of blend radius on two base surfaces.

  • PDF

Practical Method for Generating Surface Mesh using Offset Table (기본 오프셋을 이용한 상선의 선체표면 격자계 생성방법)

  • Wo-Joan Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.61-69
    • /
    • 1999
  • To promote the usability of CFD techniques for the basic hull form design, a hull surface mesh generating program, based on given station offsets and centerline profile, is developed. The new method employs non-uniform parametric splines with predetermined waterline end-shapes of natural spline, normal spline, ellipse, parabola hyperbola, and their combinations. Generated hull surface meshes can be utilized for potential panel method immediately and can be also used as a boundary grid surface for 3-D field grid system. Mesh topology chosen to represent hull surface can be transformed into a rectangle, which he1ps the flow solvers to transform surface meshes for the nonlinear free surface condition or to define the turbulence quantities. To prove the applicability, a container ship with bow and stem bulb is chosen, and the procedures generating hull surface meshes are described.

  • PDF

Development of an Optimum Hull Form for a Container Ship with Minimum Wave Resistance (최소 조파저항을 가지는 컨테이너선의 선형최적화 기법에 대한 연구)

  • 최희종;서광철;김방은;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using B-spline surface patches. The optimization method is applied to Series 60 hull and KCS(KRISO 3600 TEU Container Ship). The obtained results prove that the method is appropriate for preliminary hull form design.

Fundamental Study for the Development of an Optimum Hull Form (최적선형개발에 대한 기초연구)

  • 최희종;전호환;정석호
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.32-39
    • /
    • 2004
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP(sequential quadratic programming) to search for different optimal hull forms. The frictional resistance has been estimated using the ITTC 1957 model-ship correlation line formula, and the wave resistance has been evaluated using a potential-flow panel method that is based on Rankine sources with nonlinear free surface boundary conditions. The geometry of a hull surface has been modified using B-spline surface patches, during the whole optimization process. The numerical analyses have been carried out for the modified Wilgey hull at three different speeds (Fn=0.25, 0.316, 0.408), and the calculation results were compared.

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

A Study on the Preliminary Design of Hull Form considering Viscuous Resistance (점성저항을 고려한 선형의 초기설계에 관한 연구)

  • 이경도
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.112-116
    • /
    • 2000
  • To determine a preliminary hull form with a minimum viscous resistance this study considers the systematic variations of full form and calculations of the viscous resistance for varied hull forms. A preliminary hull form can be determined from a parametric study of viscous resistance.

  • PDF

Production Method of FRP Boat Using Developable Surface without a Mould (외판 전개를 응용한 무형틀 FRP선박 건조방법)

  • Yang, Ji-Man;Ha, Yun-Sok;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.506-515
    • /
    • 2005
  • Novel ships are commonly required iterative hull form modifications until she get reputation for new marine environment. Small FRP boats are manufactured in a identical shape with a mould. It implies that every modification step requires great time and expense which makes it difficult to improve the hull form promptly. Domestic hull form of small fishing boat of force has been evolved from the traditional hull form of developable shape. Utilizing this typical developable characteristics of small boats, ,New mouldless production method for FRP boat has been suggested and it is confirmed that the method is recommendable for a petty order of hull in evolving period of hull form development.

Potential How Analysis for a Hull with the Transom Stern (트랜섬 선미를 가지는 선형의 포텐셜 유동해석)

  • 최희종;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study focuses on the potential flow analysis for a hull with the transom stern. The method is based on a low order panel method. The Kelvin type free-surface boundary condition which is known to better fit experimental data for a high speed is applied. To treat a dry transom stern effect a special treatment for the free-surface boundary condition is adopted at the free-surface region after the transom stern. Trim and sinkage, which are important in high speed ships, are considered by an iterative method. Pressure and momentum approaches are used to calculate the wave resistance. Numerical calculations are performed for Athena hull and these results are compared with the experimental data and also other computational results.

  • PDF

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

A Study on the Visualization of Ship Hull using Computer Graphics Techniques (컴퓨터 그래픽스 기법을 이용한 선체곡면 가시화 연구)

  • H. Shin;K.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.15-20
    • /
    • 1992
  • This paper outlines the methods of visualizing 3-dimensional free form surfaces employing the Painter's algorithm, especially for the ship hull forms which are defined as open uniform Bi-cubic B-spline surfaces. The computer graphic codes are developed for the transparent wire-frame, the hidden surface removal and the shading visualization techniques, The codes are applied to the ship hull 3-dimensional surface visualization and the color graphic figures are displayed. Also Gaussian curvature is displayed on the color plots of the isoparametric net of the ship hull surface.

  • PDF