• Title/Summary/Keyword: Hsp family

Search Result 59, Processing Time 0.033 seconds

Agonists of the Dioxin Receptor: Environmental Contaminants, Food Constituents, Microbial Metabolites, and Tumor Promoters

  • Schrenk, Dieter
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.90-105
    • /
    • 2002
  • The dioxin- or aryl hydrocarbon receptor (AhR) is a member of the Per-Arnt-Sim family of nuclear transcription factors exhibiting a basic helix-loop-helix structure. In its non-ligated state the AhR is associated with hsp 90 and the immunophilin-type XAP2. Upon ligand binding the associated proteins are released, the receptor dimerizes with the AhR nuclear trans locator protein Arnt, and binds to XREs (xenobiotic-responsive elements) in the 5'-flanking region of responsive genes thus modulating their transcription.(omitted)

  • PDF

Identification of Novel Salt Stress-responsive Genes Using the Activation Tagging System in Arabidopsis (애기장대에서 activation tagging system을 이용한 새로운 고염 스트레스 반응 유전자의 동정)

  • Seok, Hye-Yeon;Nguyen, Linh Vu;Bae, Hyoungjoon;Ha, Jimin;Kim, Ha Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1030-1041
    • /
    • 2018
  • Abiotic stresses limit the growth and productivity of plants. Cellular adaptation to abiotic stresses requires coordinated regulation in gene expression directed by complex mechanisms. This study used the activation tagging system to identify novel salt stress-responsive genes. The study selected 9 activation tagging lines that showed salt stress-tolerant phenotypes during their germination stages. Thermal asymmetric interlaced-PCR (TAIL-PCR) was used to identify the T-DNA tagging sites on the Arabidopsis genome in selected activation tagging lines, including AT7508, AT7512, AT7527, AT7544, AT7548, and AT7556. RT-PCR analysis showed that ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), and microtubule-associated protein (At5g16730) were activated in AT7508, AT7512, AT7527, AT7544, and AT7556, respectively. Interestingly, in AT7548, both the genes adjacent to the T-DNA insertion site were activated: Arabinogalactan protein 13 (AGP13) (At4g26320) and F-box/RNI-like/FBD-like domains-containing protein (At4g26340). All of the seven genes were newly identified as salt stress-responsive genes from this study. Among them, the expression of ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein gene, and microtubule-associated protein gene were increased under salt-stress condition. In addition, AT7508, AT7527, and AT7544 were more tolerant to salt stress than wild type at seedling development stage, functionally validating the screening results of the activation tagging lines. Taken together, our results demonstrate that the activation tagging system is useful for identifying novel stress-responsive genes.

Development of Proteomics-based Biomarkers for 4 Korean Cultivars of Sorghum Seeds (Sorghum bicolor (L.) Moench) (국내 수수 종자 분석을 위한 프로테오믹스-기반 바이오마커 개발)

  • Kim, Jin Yeong;Lee, Su Ji;Ha, Tae Joung;Park, Ki Do;Lee, Byung Won;Kim, Sang Gon;Kim, Yong Chul;Choi, In Soo;Kim, Sun Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • BACKGROUND: Sorghum (Sorghum bicolor (L.) Moench) ranks as the 6th most planted crop in the world behind wheat, rice, maize, soybean, and barley. The objective of this study was to identify bio-marker among sorghum cultivars using proteomics approach such as two-dimensional polyacrylamide gel electrophoresis (2-DE) coupled with mass spectrometry (MS). METHODS AND RESULTS: Proteins were extracted from sorghum seed, and separated by 2-DE. Total 652 spots were detected from 4 different sorghum seed after staining of 2-DE with colloidal Coomassie brilliant blue (CBB). Among them, 8 spots were differentially expressed and were identified using MALDI-TOF/TOF mass spectrometry. They were involved in RNA metabolism (spot1, spot 4), heat shock proteins (HSPs, spot 2), storage proteins (spot 3, spot 5, and spot 6), and redox related proteins (spot 8). Eight of these proteins were highly up-regulated in Whinchalsusu (WCS). The HSPs, Cupin family protein, and Globulin were specifically accumulated in WCS. The DEAD-box helicase was expressed in 3 cultivars except for WCS. Ribonuclease T2 and aldo-keto reductase were only expressed in 3 cultivars except for Daepung-susu (DPS). CONCLUSION(S): Functions of identified proteins were mainly involved in RNA metabolism, heat shock protein (HSP), and redox related protein. Thus, they may provide new insight into a better understanding of the charactreization between the cultivars of sorghum.

Immunological Characterization and Localization of the Alcohol-dehydrogenase in Streptococcus pneumoniae (폐렴구균 알코올탈수소효소의 세포 특이성 및 세포내 분포)

  • 권혁영;박연진;표석능;이동권
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • Heat shock proteins serve as chaperone by preventing the aggregation of denatured proteins and promote survival of pathogens in harsh environments. In bacteria, ethanol shock induced the major chaperone GroEL and DnaK, but in Streptococcus pneumoniae, it induced neither GroEL nor DnaK but alcohol dehydrogenase (ADH). In this study, ADH gene encoding a 104-kDa (p104) protein was identified and characterized. The deduced amino acid sequence of pneumococcal ADH shows homology with other members of the ADH family, and particularly with Entamoeba histolytica ADH2 and E. coli ADH. S. pneumoniae adh is composed of 883 amino acids and its estimated isoelectric point is 6.09. Although ADH is conserved between S. pneumoniae and E. coli, immunoblot analysis employing antisera raised against pneumococcus ADH demonstrated no cross-reactivity with ADH analog in Eschericha coli, Staphylococcus aureus and human HeLa cells. Also secretion of ADH was demonstrated by subcellular fractionation and immunoblot analysis of proteins. These results suggest that S. pneumoniae ADH could be a highly feasible candidate for both diagnostic marker and vaccine.

  • PDF

The Establishment of Tumor Necrosis Factor Receptor-associated Protein1 (TRAP1) Transgenic Mice and Severe Fat Accumulation in the Liver of TRAP1 Mice during Liver Regeneration

  • Im, Chang-Nim;Zheng, Ying;Kim, Sun Hye;Huang, Tai-Qin;Cho, Du-Hyong;Seo, Jeong-Sun
    • Interdisciplinary Bio Central
    • /
    • v.5 no.4
    • /
    • pp.9.1-9.7
    • /
    • 2013
  • Introduction: Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial heat shock protein (HSP), which belongs to HSP90 family. It plays important roles in regulating mitochondrial integrity, protecting against oxidative stress, and inhibiting cell death. Recent studies suggest that TRAP1 is linked to mitochondria and its metabolism. In this study, we established TRAP1 transgenic mice and performed partial hepatectomy (PH) on wild-type (WT) and TRAP1 transgenic mice to investigate the function of TRAP1 during liver regeneration. Results and Discussion: We found that TRAP1 was highly expressed in liver as well as kidney. In addition, liver regeneration slightly decreased together with increased fatty liver and inflammation at 72 hr after PH in TRAP1 transgenic mice compared with WT control group mice. Concomitantly, we observed decreased levels of p38 protein in TRAP1 transgenic mice compared with WT control group mice. These results suggest that TRAP1 plays a critical role in liver energy balance by regulating lipid accumulation during liver regeneration. Conclusions and Prospects: To our knowledge, we reported, for the first time, that liver regeneration slightly reduced together with increased fat accumulations after PH in TRAP1 transgenic mice compared with WT control group mice. Concomitantly, we observed decreased levels of p38 protein in TRAP1 transgenic mice compared with WT control group mice. Overexpression of TRAP1 might affect liver regeneration via disturbing mitochondrial function leading to fatty liver in vivo.

The regulation of stress induced genes by yeast transcription factor GCN4

  • Seong Kimoon;Lee Jae Yung;Kim Joon
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.135-139
    • /
    • 2002
  • Yeast cells respond to condition of amino acid starvation by synthesizing GCN4, a typical eukaryotic transcriptional activator, which regulates the expression of many amino acids biosynthetic genes. By introducing point mutations in the DNA binding domain of GCN4, mutants with normal DNA binding activity but defective in transcriptional activity were isolated to identify unknown proteins that could suppress the mutant phenotype under an amino acid depletion condition. As a result, SSB(Stress-Seventy B) subfamily proteins were identified as suppressors of mutant GCN4. SSB proteins were known as a member of yeast hsp70 family that probably aids passage of nascent chain through ribosomes. Among them, the mechanism of suppression by SSB2 on the defective GCN4 mutant strains is under investigation. Gcn4p directly interacts with Ssb2p through the basic DNA binding domain of GCN4. It suggests the possibility that physical interaction might induce the transcriptional activation of Gcn4p.

  • PDF

A Nucleotide Exchange Factor, BAP, dissociated Protein-Molecular Chaperone Complex in vitro (In vitro에서 핵산치환인자 BAP이 단백질-분자 샤페론 복합체 해리에 미치는 영향)

  • Lee Myoung-Joo;Kim Dong-Eun;Lee Tae-Ho;Jeong Yong-Kee;Kim Young-Hee;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.409-414
    • /
    • 2006
  • Molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) associate with the newly synthesized proteins to prevent their aggregation and help them fold and assemble correctly. Chaperone function of BiP, which is a Hsp70 homologue in ER, is controlled by the N-terminal ATPase domain. The ATPase activity of the ATPase domain is affected by regulatory factors. BAP was identified as a nucleotide exchange factor of BiP (Grp78), which exchanges ADP with ATP in the ATPase domain of BiP This study presents whether BAP can influence folding of a protein, immunoglobulin heavy chain that is bound to BiP tightly. We first examined which nucleotide of ADP and ATP affects on BAP binding to BiP The data showed that endogenous BAP of HEK293 cells prefers ADP for binding to BiP in vitro, suggesting that BAP first releases ADP from the ATPase domain in order to exchange with ATP. Immunoglobulin heavy chain, an unfolded protein substrate, was released from BiP in the presence of BAP but not in the presence of ERdj3, which is another regulatory factor for BiP accelerating the rate of ATP hydrolysis of BiP The ADP-releasing function of BAP was, therefore, believed to be responsible for immunoglobulin heavy chain release from BiP. Grp170, another Hsp70 homologue in ER, did not co-precipited with BAP from $[^{35}S]$-metabolic labeled HEK293 lysate containing both overexpressed Grp170 and BAP. These data suggested that BAP has no specificity to Grp170 although the ATPase domains of Grp170 and BiP are homologous each other.

Comparison of Thermal Stress Induced Heat Shock Factor 1 (HSF1) in Goldfish and Mouse Hepatocyte Cultures (붕어와 마우스의 간세포 배양에서 열 스트레스에 의해 유도되는 heat shock factor1 (HSF1)의 비교)

  • Kim, So-Sun;So, Jae-Hyeong;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1360-1366
    • /
    • 2016
  • Heat shock proteins (HSPs) are induced in response to various physiological or environmental stressors. However, the transcriptional activation of HSPs is regulated by a family of heat shock factors (HSFs). Fish models provide an ideal system for examining the biochemical and molecular mechanisms of adaptation to various temperatures and water environments. In this study, we examined the pattern differentials of heat shock factor 1 (HSF1) and expression of heat shock protein 70 (HSP70) in response to thermal stress in goldfish and mouse hepatocyte cultures by immune-blot analysis. Goldfish HSF1 (gfHSF1) changed from a monomer to a trimer at $33^{\circ}C$ and showed slightly at $37^{\circ}C$, whereas mouse HSF1 (mHSF1) did so at $42^{\circ}C$. This experiment showed similar results to a previous study, indicating that gfHSF1 and mHSF1 play different temperature in the stress response. We also examined the activation conditions of the purified recombinant proteins in human HSF1 (hmHSF1) and gfHSF1 using CD spectroscopy and immune-blot analysis. The purified recombinant HSF1s were treated from $25^{\circ}C$ to $42^{\circ}C$. Structural changes were observed in hmHSF1 and gfHSF1 according to the heat-treatment conditions. These results revealed that both mammal HSF1 (human and mouse HSF1) and fish HSF1 exhibited temperature-dependent changes; however, their optimal activation temperatures differed.

Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan

  • Luo, Kai-Hong;Chen, Ssu-Ching;Liao, Hung-Yu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.16-24
    • /
    • 2016
  • A new strain of Pseudomonas sp. was isolated from mercury (Hg)-contaminated sites in Taiwan. This bacterium removed more than 80% of Hg present in the culture medium at 12 h incubation and was chosen for further analysis of the molecular mechanisms of Hg tolerance/removal abilities in this Pseudomonas sp. We used RNA-seq, one of the next-generation sequencing methods, to investigate the transcriptomic responses of the Pseudomonas sp. exposed to 60 mg/L of Hg2+. We de novo assembled 4,963 contigs, of which 10,533 up-regulated genes and 5,451 down-regulated genes were found to be regulated by Hg. The 40 genes most altered in expression levels were associated with tolerance to Hg stress and metabolism. Functional analysis showed that some Hg-tolerant genes were related to the mer operon, sulfate uptake and assimilation, the enzymatic antioxidant system, the HSP gene family, chaperones, and metal transporters. The transcriptome were analyzed further with Gene Ontology (GO) and Cluster of Orthologous Groups (COGs) of proteins and showed diverse biological functions and metabolic pathways under Hg stress.

Caffeine-induced food-avoidance behavior is mediated by neuroendocrine signals in Caenorhabditis elegans

  • Min, Hyemin;Youn, Esther;Kawasaki, Ichiro;Shim, Yhong-Hee
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.31-36
    • /
    • 2017
  • High-dose caffeine uptake is a developmental stressor and causes food-avoidance behavior (aversion phenotype) in C. elegans, but its mode of action is largely unknown. In this study, we investigated the molecular basis of the caffeine-induced aversion behavior in C. elegans. We found that aversion phenotype induced by 30 mM caffeine was mediated by JNK/MAPK pathway, serotonergic and dopaminergic neuroendocrine signals. In this process, the dopaminergic signaling appears to be the major pathway because the reduced aversion behavior in cat-2 mutants and mutants of JNK/MAPK pathway genes was significantly recovered by pretreatment with dopamine. RNAi depletion of hsp-16.2, a cytosolic chaperone, and cyp-35A family reduced the aversion phenotype, which was further reduced in cat-2 mutants, suggesting that dopaminergic signal is indeed dominantly required for the caffeine-induced food aversion. Our findings suggest that aversion behavior is a defense mechanism for worms to survive under the high-dose caffeine conditions.