Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.9.1030

Identification of Novel Salt Stress-responsive Genes Using the Activation Tagging System in Arabidopsis  

Seok, Hye-Yeon (Department of Integrated Biological Science, Pusan National University)
Nguyen, Linh Vu (Department of Integrated Biological Science, Pusan National University)
Bae, Hyoungjoon (Department of Integrated Biological Science, Pusan National University)
Ha, Jimin (Department of Integrated Biological Science, Pusan National University)
Kim, Ha Yeon (Department of Integrated Biological Science, Pusan National University)
Lee, Sun-Young (Department of Integrated Biological Science, Pusan National University)
Moon, Yong-Hwan (Department of Integrated Biological Science, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.9, 2018 , pp. 1030-1041 More about this Journal
Abstract
Abiotic stresses limit the growth and productivity of plants. Cellular adaptation to abiotic stresses requires coordinated regulation in gene expression directed by complex mechanisms. This study used the activation tagging system to identify novel salt stress-responsive genes. The study selected 9 activation tagging lines that showed salt stress-tolerant phenotypes during their germination stages. Thermal asymmetric interlaced-PCR (TAIL-PCR) was used to identify the T-DNA tagging sites on the Arabidopsis genome in selected activation tagging lines, including AT7508, AT7512, AT7527, AT7544, AT7548, and AT7556. RT-PCR analysis showed that ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), and microtubule-associated protein (At5g16730) were activated in AT7508, AT7512, AT7527, AT7544, and AT7556, respectively. Interestingly, in AT7548, both the genes adjacent to the T-DNA insertion site were activated: Arabinogalactan protein 13 (AGP13) (At4g26320) and F-box/RNI-like/FBD-like domains-containing protein (At4g26340). All of the seven genes were newly identified as salt stress-responsive genes from this study. Among them, the expression of ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein gene, and microtubule-associated protein gene were increased under salt-stress condition. In addition, AT7508, AT7527, and AT7544 were more tolerant to salt stress than wild type at seedling development stage, functionally validating the screening results of the activation tagging lines. Taken together, our results demonstrate that the activation tagging system is useful for identifying novel stress-responsive genes.
Keywords
Abiotic stress; activation tagging system; Arabidopsis; osmotic stress; salt stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goussias, C., Boussac, A. and Rutherford, A. W. 2002. Photosystem II and photosynthetic oxidation of water: an overview. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357, 1369-1381.   DOI
2 Hebbern, C. A., Laursen, K. H., Ladegaard, A. H., Schmidt, S. B., Pedas, P., Bruhn, D., Schjoerring J. K., Wulfsohn, D. and Husted, S. 2009. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare). Physiol. Plant. 135, 307-316.   DOI
3 Ito, T. and Meyerowitz, E. M. 2000. Overexpression of a gene encoding a cytochrome P450, CYP78A9 induces large and seedless fruit in Arabidopsis. Plant Cell 12, 1541-1550.   DOI
4 Jeong, D. H., An, S., Kang, H. G., Moon, S., Han, J. J., Park, S., Lee, H. S., An, K. and An, G. 2002. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636-1644.   DOI
5 Kovacheva, S., Bedard, J., Patel, R., Dudley, P., Twell, D., Rios, G., Koncz, C. and Jarvis, P. 2005. In vivo studies on the roles of Tic110, Tic40, and Hsp93 during chloroplast protein import. Plant J. 41, 412-428.
6 Lee, S. Y., Seok, H. Y., Tarte, V. N., Woo, D. H., Le, D. H., Lee, E. H. and Moon, Y. H. 2014. The Arabidopsis chloroplast protein S-RBP11 is involved in oxidative and salt stress responses. Plant Cell Rep. 33, 837-847.   DOI
7 Adam, Z., Adamska, I., Nakabayashi, K., Ostersetzer, O., Haussuhl, K., Manuell, A., Zheng, B., Vallon, O., Rodermel, S. R., Shinozaki, K. and Clarke, A. K. 2001. Chloroplast and mitochondrial proteases in Arabidopsis. Plant Physiol. 125, 1912-1918.   DOI
8 Liu, Y. G., Mitsukawa, N., Oosumi, T. and Whittier, R. F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457-463.   DOI
9 Marsch-Martinez, N., Greco, R., Van Arkel, G., Herrera-Estrella, L. and Pereira, A. 2002. Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol. 129, 1544-1556.   DOI
10 Marschner, H. 2011. Marschner's mineral nutrition of higher plants. 3rd ed., Academic Press: Boston, MA, USA.
11 Ashraf, M. and Harris, P. J. C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3-16.   DOI
12 Adam, Z., Rudella, A. and van Wijk, K. J. 2006. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr. Opin. Plant Biol. 9, 234-240.   DOI
13 Allen, M. D., Kropat, J., Tottey, S., Del Campo, J. A. and Merchant, S. S. 2007. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiol. 143, 263-277.
14 Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27, 84-93.   DOI
15 Constan, D., Froehlich, J. E., Rangarajan, S. and Keegstra, K. 2004. A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol. 136, 3605-3615.   DOI
16 Neuwald, A. F., Aravind, L., Spouge, J. L. and Koonin, E. V. 1999. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27-43.
17 Merlot, S., Mustilli, A. C., Genty, B., North, H., Lefebvre, V., Sotta, B., Vavasseur, A. and Giraudat, J. 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30, 601-609.   DOI
18 Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.   DOI
19 Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2012. NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta. 1819, 97-103.   DOI
20 Nickelsen, J. and Rengstl, B. 2013. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609-635.   DOI
21 Ogura, T. and Wilkinson, A. J. 2001. AAA + superfamily ATPases: common structure-diverse function. Genes Cells 6, 575-597.   DOI
22 Maurizi, M. R. and Xia, D. 2004. Protein binding and disruption by Clp/Hsp100 chaperones. Structure 12, 175-183.   DOI
23 Park, H. Y., Seok, H. Y., Park, B. K., Kim, S. H., Goh, C. H., Lee, B. H., Lee, C. H. and Moon, Y. H. 2008. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem. Biophys. Res. Commun. 375, 80-85.   DOI
24 Park, S. and Rodermel, S. R. 2004. Mutations in ClpC2/ Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc. Natl. Acad. Sci. USA. 101, 12765-12770.   DOI
25 Schirmer, E. C., Glover, J. R., Singer, M. A. and Lindquist, S. 1996. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21, 289-296.   DOI
26 Socha, A. L. and Guerinot, M. L 2014. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front. Plant Sci. 5, 106.
27 Seok, H. Y., Woo, D. H., Nguyen, L. V., Tran, H. T., Tarte, V. N., Mehdi, S. M. M., Lee, S. Y. and Moon, Y. H. 2017. Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response. Planta 245, 329-341.   DOI
28 Sjogren, L. L., MacDonald, T. M., Sutinen, S. and Clarke, A. K. 2004. Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol. 136, 4114-4126.   DOI
29 Sjogren, L. L. E., Tanabe, N., Lymperopoulos, P., Khan, N. Z., Rodermel, S. R., Aronsson, H. and Clarke, A. K. 2014. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. J. Biol. Chem. 289, 11318-11330.   DOI
30 Snider, J., Thibault, G. and Houry, W. A. 2008. The AAA + superfamily of functionally diverse proteins. Genome Biol. 9, 216.   DOI
31 Sreenivasulu, N., Sopory, S. K. and Kavi Kishor, P. B. 2007. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388, 1-13.   DOI
32 Tarte, V. N., Seok, H. Y., Woo, D. H., Le, D. H., Tran, H. T., Baik, J. W., Kang, I. S., Lee, S. Y., Chung, T. and Moon, Y. H. 2015. Arabidopsis Qc-SNARE gene AtSFT12 is involved in salt and osmotic stress responses and Na+ accumulation in vacuoles. Plant Cell Rep. 34, 1127-1138.   DOI
33 Xiong, L. M., Ishitani, M., Lee, H. and Zhu, J. K. 2001. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13, 2063-2083.   DOI
34 Zhu, J. K. 2001. Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 4, 401-406.   DOI
35 Zheng, B., Halperin, T., Hruskova-Heidingsfeldova, O., Adam, Z. and Clarke, A. K. 2002. Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol. Plant. 114, 92-101.   DOI