• Title/Summary/Keyword: Hovering Control System

Search Result 71, Processing Time 0.027 seconds

Adaptive Backstepping Hovering Control for a Quadrotor with Unknown Parameters (미지 파라미터를 갖는 쿼드로터의 적응 백스테핑 호버링 제어)

  • Lee, Keun Uk;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1002-1007
    • /
    • 2014
  • This paper deals with the adaptive backstepping hovering control for a quadrotor with model parameter uncertainties. In this paper, the backstepping based technique is utilized to design a nonlinear adaptive controller which can compensate for the motor thrust factor and the drag coefficient of a quadrotor. First, the quadrotor nonlinear dynamics is derived using Newton-Euler formulation. In particular, we use the ${\pi}/4$ shifted coordinate for x- and y-axis of a quadrotor. Second, an adaptive backstepping based attitude and altitude tracking control method is presented. The system stability and the convergence of tracking errors are proven using the Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

Development of Underwater ROV for Crack Inspection of River Facilities (하천 시설물 균열 검사를 위한 수중 ROV 개발)

  • Seong, Ho-Hwan;Lee, Jang-Myung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.129-136
    • /
    • 2021
  • River facilities and port structures require a regular inspection and diagnosis due to obsolescence. Currently, most river facilities are undergoing indirect inspection and diagnosis by divers. The underwater inspections are not feasible due to safety issues of divers and restrictions on working hours and environment. To overcome these issues, it is intended to conduct inspections of river facilities using underwater drones. In this research, an underwater ROV (Remote Operated Vehicle) has been developed, which is a kind of drone with propellers. As a key device of this research, an injection device has been attached to the underwater drone to conduct an operation test, a stable operation test of an underwater drone, and a test of attached sensors. The river facility inspection can be carried out optimally using the hovering control of the drone and injection systems. With the developed ROV system, hovering test and injection test have been performed to verify the feasibility of this development.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

Development of a Hovering AUV for Underwater Explorations

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes the design and development of a hovering AUV constructed at Cheju National University and analyses the dynamic performance of the vehicle using simulation programs. The main purpose of this AUV is to carry out fundamental tests in its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general ROV appearance for underwater works and its dimensions are 0.75m*0.5m*0.5m. It has 4 thrusters of 450 watts for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring water depth and a magnetic compass for measuring heading angle. The navigation of the vehicle is controlled by an on-board Pentium III-class computer, which runs with the help of the Windows XP operating system. These give us an appropriate environment for developing various algorithms needed for developing and advancing Hovering AUV.

Implementation of Virtual Instrumentation based Realtime Vision Guided Autopilot System and Onboard Flight Test using Rotory UAV (가상계측기반 실시간 영상유도 자동비행 시스템 구현 및 무인 로터기를 이용한 비행시험)

  • Lee, Byoung-Jin;Yun, Suk-Chang;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.878-886
    • /
    • 2012
  • This paper investigates the implementation and flight test of realtime vision guided autopilot system based on virtual instrumentation platform. A graphical design process via virtual instrumentation platform is fully used for the image processing, communication between systems, vehicle dynamics control, and vision coupled guidance algorithms. A significatnt ojective of the algorithm is to achieve an environment robust autopilot despite wind and an irregular image acquisition condition. For a robust vision guided path tracking and hovering performance, the flight path guidance logic is combined in a multi conditional basis with the position estimation algorithm coupled with the vehicle attitude dynamics. An onboard flight test equipped with the developed realtime vision guided autopilot system is done using the rotary UAV system with full attitude control capability. Outdoor flight test demonstrated that the designed vision guided autopilot system succeeded in UAV's hovering on top of ground target within about several meters under geenral windy environment.

A Hovering Control of an Unmanned Helicopter Using Fuzzy Rules (Fuzzy규칙을 사용한 무인헬리콥터 호버링 제어)

  • Chae, H.S.;Chon, J.C.;Kim, B.S.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.525-527
    • /
    • 1998
  • The fuzzy-based autonomous position control system for hovering of an unmanned helicopter has been developed. An unmanned helicopter Is flying vehicle which can aviate freely even at narrow or hazardous space. The bottleneck of the full utilization of the unmanned helicopter is mainly on the control difficulty caused from its nonlinear and unstable characteristics. This paper presents a Fuzzy control technique to have the unmanned helicopter perform hovering. Experimental results of real unmanned helicopter control are included.

  • PDF

Hovering Flight Control for a Model Helicopter using the Minimal-Order LQG/LTR Technique (Minimal Order LQG/LTR 기법에 의한 모형헬리콥터의 정지비행 자세제어)

  • Yang, J.S.;Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.457-459
    • /
    • 1998
  • This paper presents a 3-DOF hovering flight controller for a model helicopter using the minimal order LQG/LTR technique. A model helicopter is an unstable multi-input multi-output nonlinear system strongly exposed to disturbances, so a robust multi-variable control theory should be applied to control it. The minimal order LQG/LTR technique which uses a reduced-order observer in the LTR procedure is used to design the controller. Performances for the 3-DOF hovering flight controller are evaluated through computer simulations.

  • PDF

Design and Implementation of A Hovering AUV with A Rotatable-Arm Thruster (회전팔 추진기를 가진 시험용 HAUV의 설계 및 구현)

  • Shin, Dong H.;Bae, Seol B.;Joo, Moon G.;Baek, Woon-Kyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 2014
  • In this paper, we propose the hardware and software of a test-bed of a hovering AUV (autonomous underwater vehicle). Test-bed to develop as the underwater robot for the hovering -type is planning to apply for marine resource development and exploration for deep sea. The RTU that controls a azimuth thruster and a vertical thruster of test-bed is a intergrated-type thruster. The main control unit that collects sensor's data and performs high-speed processing and controls a movement of test-bed is a underwater hybrid navigation system. Also it transfers position, posture, state information of test-bed to the host PC of user using a wireless communication. The host PC checks a test-bed in real time by using a realtime monitoring system that is implemented by LabVIEW.

Design of a Test bed and Performance Evaluation for a Hovering Type Autonomous Underwater Vehicle under Open Control Platform (개방형 제어 플랫폼 기반 호버링형 무인잠수정 테스트베드 설계 및 성능평가)

  • Choi, Jae-Weon;Ha, Tae-Kyu;Binugroho, Eko Henfri;Yu, Chang-Ho;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.489-497
    • /
    • 2010
  • This paper presents the design of hardware platform, which is a test bed for the navigation system and hovering type AUV (Autonomous Underwater Vehicle) under the OCP (Open Control Platform). The developed AUV test bed consists of two hulls, four thrusters, and the navigation system which uses a SBC2440II with IMU (Inertial Measurement Unit). And the SMC (Sliding Mode Control) is chosen for the diving and steering control of the AUV. This paper uses ACE/TAO RTEC (Real-Time Event Channel) as a middleware platform in order to control and communicate in the developed AUV test bed. In this paper, two computers are used and each of them is dedicated for the specific purpose, the first computer is used as the SMC module and the middleware platform for the ACE/TAO RTEC and the second computer is used for the sensor controller. We analyze the performance of the AUV test bed under the OCP.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF