• 제목/요약/키워드: Hovering

검색결과 239건 처리시간 0.028초

곤충의 호버링 비행을 구현하는 메카니즘의 설계 (Design of a Mechanism for Reproducing Hovering Flight of Insects)

  • 정세용;최용제
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

6자유도 호버링 AUV의 설계 및 제어 (Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV)

  • 정상기;최형식;서정민;;김준영
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.797-804
    • /
    • 2013
  • In this paper, a study of a new hovering six dof underwater robot with redundant horizontal thrusters, titled HAUV (hovering AUV), is presented. The results of study on the structure design, deployment of thrusters, and development of the developed control system of the AUV was presented. For the HAUV structure, a structure design and an analysis of the thrusting system was performed. For navigation, a sensor fusion board which can proceed various sensor signals to identify correct positions and speeds was developed and a total control system including EKF (Extended Kalman Filter) was designed. Rolling, pitching and depth control tests of the HAUV have been performed, and relatively small angle error and depth tracking error results were shown.

날개짓에 의한 공중정지비행의 이차원 메카니즘 (Two-Dimensional Mechanism of Hovering Flight by Flapping Wings)

  • 김도균;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF

UH-60A 로터 블레이드의 정지비행 성능해석 (PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE)

  • 박영민;최인호;장병희
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.45-49
    • /
    • 2008
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over-prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used as a preliminary performance analysis tool for hovering helicopter rotor blades.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF

강화학습을 이용한 1축 드론 수평 제어 (Hovering Control of 1-Axial Drone with Reinforcement Learning)

  • 이태우;유진후;박희민
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.250-260
    • /
    • 2018
  • In order to control the quadcopter using reinforcement learning, hovering of 1-axial drones prototype is implemented through reinforcement learning. A complementary filter is used to measure the correct angle, and the range of angles is from -180 degrees to +180 degrees using modified complementary filter. The policy gradient method is used together with the REINFORCE algorithm for reinforcement learning. The prototype learned in this way confirmed the difference in performance depending on the length of the episode.