• Title/Summary/Keyword: Hot-wire measurement

Search Result 96, Processing Time 0.021 seconds

Minimizing the Measurement Error from Gas Compositions of Gas Vent in Sanitary Landfill (쓰레기 매립지 가스 포집관에서 가스조성에 따른 계측오차의 최소화)

  • 이해승;이문형
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • A methods of minimizing the measurement error brought from gas compositions was proposed by Hot wire Anemometer which don't have measurement resistance to calculate of gas vent in sanitary landfill. It was determined measurement error to compared velocity at the center of pipe to calculate using rotor meter and density gas compositions with velocity at the center of pipe to calculate using water head indicator which don't have measurement resistance. Considering the methods of minimizing gas velocity in sanitary landfill using hot wire anemometer and rotor meter, it was found to minimize within 10% as error of gas vent in sanitary landfill.

Measurement of Developing Turbulent Flows in a 90-Degree Square Bend with Spanwise Rotation

  • Choi Young Don;Kim Dong Chul;Lee Kun Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1503-1516
    • /
    • 2005
  • Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with span-wise rotation are measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and the Reynolds stress components. Combined effects of the centrifugal and Coriolis forces due to the curvature and the rotation of the bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

A Study on the Flame Temperature Measurement of the Transiently Propagating Flame by using Platinum-Hot-Wire-Resistance-Thermometry (열선백금저항선을 이용한 과도적 전파화염의 화염온도측정에 관한 연구)

  • 정인석;조경국;황상순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.94-101
    • /
    • 1985
  • The flame temperature of LPG-air premixture flame was measured by extrapolation of limiting case corresponding to the infinitely thin diameter of Platinum-resistance-hot-wire. LPG-air premixture flame, initially under atmospheric pressure and room temperature, propagates downward from top of the model combustion chamber maintained at constant pressure through the whole combustion process. Analytical calculation technique was also applied to determine full temperature history or spatial temperature distribution from flame reaction zone to burnt gas region.

  • PDF

Measurement of Thermal Conductivities of Freon-12 and Freon-22 at High Pressure by Unsteady Hot Wire Method (비정상 열선법에 의한 Freon-12와 Freon-22의 고압상태에서의 열전도율측정)

  • ;;Lee, Taik Sik;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.2 no.2
    • /
    • pp.42-46
    • /
    • 1978
  • Thermal conductivities of Freon-12 and Freon-22 were measured at room temperature up to 35 MPa with the aid of transient hot wire method. Glycerin was used to check the performance of the experimental equipment. The thermal conductivities of Freon-12 and Freon-22 at the maximum pressure, 35 MPa, were increased by 25% approximately for those at satufated state.

Characteristics of the Air Flow Variation by Throttle Step Change in a Gasoline Engine (스로틀 개폐에 따른 가솔린 엔진의 비정상상태 유량변화 특성)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.92-101
    • /
    • 1996
  • In a gasoline engine, the characteristics of air flow is very important not only for the design of the intake system geometry bout also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement of the induction air mass. In this study, an air flow rate measurement was conducted by using the hot wire flow meter at the upstream of the intake port and the throttle. At the upstream of the throttle, the overshoot phenomena of the air flow rate by fast throttle opening were analyzed with choked flow. At the upstream of the intake port, the cylinder variation of the air flow rate and the difference between fast throttle opening and closing were showed during the unsteady state by the throttle step change. The results of this study can be used for the design of the throttle valve geometry and cylinder by cylinder control.

  • PDF

Measurement of Inward Turbulent Flows in a Rotating with Square Cross-Section $90^{\circ}$ Duct (회전하는 정사각단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정)

  • Kim, Dong-Chul;Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.627-632
    • /
    • 2000
  • Developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. The six orientation hot-wire technique was applied to measured the distributions of 3 mean velocities and 6 Reynolds stress components. Effects of Coriolis and centrifugal forces caused by the curvature and rotation of bend on the mean motion and turbulence structures were experimentally investigated Productive addition of Coriolis and centrifugal forces to the outward radial direction in the entrance region of bend increases the secondary flow intensity according to the rotational speeds. However, after 45 degree of bend, centrifugal force due to the rotation of bend may promote the break down of counter rotating vortex pair into multi-cellular pattern, thereby decreasing the production rate of turbulence energy and Reynolds stresses.

  • PDF

A method for measuring the three-dimensional flows by the hot-wire anemometers (열선 유속계를 이용한 3차원 유동의 계측 방법)

  • 강신형;유정열;백세진;이승배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.746-754
    • /
    • 1987
  • A method for measuring three-dimensional turbulent flows by the hot-wire anemometer is introduced. Mojolla's method using the X-type probe is adopted and modified for the slantwire probe without the linearizer. The probe is aligned with specified angles to the given uniform flow and the shear layer to verify the measuring errors due to the three-dimensionality and the turbulence level. Errors in the measurements of mean velocities and Reynolds stresses increase with the degree of three dimensionality in the flow. The incoming flow angle of 20 degree seems to be the limit of reasonable flow measurements. But there still appear large data scatterings in Reynolds shear stresses.

Measurement of Outward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section (단순변형률 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트내 외향 난류유동 측정)

  • Oh, Chang-Min;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.623-631
    • /
    • 2000
  • Hot-wire measurements were carried out on the developing turbulent flows subject to plane rate of strain in a rotating curved duct. The cross-section of the curved duct varies from 100mm${\times}$50mm rectangular shape at the bend inlet gradually to the 50mm${\times}$100mm rectangular shape at the bend outlet. Experimental setup consists of the test section of $90^{\circ}$ curved duct, rotating disc of 1.95m diameter, Ag-Ni precision slip ring, automatic traversing mechanism, variable speed motor, centrifugal blower, orifice flowmeter and hot-wire anemometer. Data signals from the rotating curved duct are transmitted through the slip ring to the computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynold stresses components were obtained from the fluctuating and mean voltage measured by the slant type hot-wire probe rotating into 6 orientations. We investigate the effects of Coriolis and centrifugal forces on the turbulence structure.

Apparatus for Comparing Thermal Conductivity of Nanofluids and Base Fluid Using Simultaneously Measured Resistance Variation Signals from Two Hot Wire Sensors (동시에 측정된 두 열선센서의 저항변화 신호를 이용한 나노유체와 기본유체의 열전도율 비교장치)

  • Lee, Shin Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Exact comparisons of the thermal conductivities of the base fluid and a nanofluid are very important in the early stages of nanofluid development. A simple procedure of measuring the thermal conductivity of the two fluids by the transient hot wire method and numerically dividing these values is used for this purpose. However, because the experiments are not performed simultaneously and the physical properties of the measurement system are sometimes not properly known, large errors are incurred during the evaluation process. This article proposes a new apparatus for thermal conductivity comparison where the working principle is mainly based on relative measurement rather than absolute measurement. The measuring circuit and data processing steps are explained in detail; a validation test was performed using the well-known glycerine and engine oil.

Measurement of turbulent flow characteristics of a rectangular duct with a 180.deg. bend by hot wire anemometer (열선유속계에 의한 180.deg.곡관을 갖는 직사각 단면덕트에서의 난류유동 특성의 측정)

  • 박호영;유석재;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.734-746
    • /
    • 1990
  • Velocities and Reynolds stresses in 3-dimensional turbulent flow in rectangular ducts with a 180.deg. bend were measured by hot wire anemometer. Slant wire was rotated to 4 directions and I type wire was rotated to 2 directions and the voltage outputs of them were combined to obtain the mean velocities and Reynolds stresses. Flow characteristics in the 1.5:1 and 2:1 cross secioned 180.deg. bend were measured and the results were compared with the data from Moon for the square sectioned 180.deg. bend flow. Flows in rectangular sectioned 180.deg. bend show the reduction in secondary flow and therefore the reduction of double maximum in local mean velocities.