• Title/Summary/Keyword: Hot-water temperature

Search Result 1,033, Processing Time 0.026 seconds

EFFECTS OF NICARBAZIN AND HOT TEMPERATURE ON EVAPORATIVE WATER LOSS, ACID-BASE BALANCE, BODY TEMPERATURE AND CARBON DIOXIDE EXHALATION IN ADULT ROOSTERS

  • Lee, B.D.;Lee, S.K.;Hyun, W.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • Two experiments were conducted to study the effect of ambient temperature and nicarbazin on SCWL adult roosters. In Experiment 1, the effects of nicarbazin supplementation (125 ppm) on the water metabolism, blood acid-base balance; and rectal temperature of 16 birds in normal ($21^{\circ}C$) and hot ($35-36^{\circ}C$) temperature were investigated. In Experiment 2, the evaporative water loss and $CO_2$ exhalation from 8 birds were measured individually with an open-circuit gravimetric respiration apparatus in normal ($21^{\circ}C$) and hot ($33.5-34^{\circ}C$) temperature. The amount of water intake and evaporative water loss increased in birds under heat stress (HS). Nicarbazin exacerbated these effect in hot temperature. Also, nicarbazin decreased the blood $pCO_2$ and increased pH of HS birds. The rectal temperature of birds increased in hot temperature, and nicarbazin worsened this effect. The evaporative water loss, measured directly with respiration apparatus (Experiment 2), was increased in hot temperature. HS decreased the amount of $CO_2$ exhalation. Nicarbazin did not exert ant effect on either of these measurements, probably due to the limited duration (2 h) of the trial. The decrease in $CO_2$ exhalation by HS birds could be explained by reduced metabolic rate, which helps homeothermy of birds in hot temperature.

Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House (컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.

Analysis of HGAX Cycle for Reducing the Generator Temperature and Enhancing the Hot-Water Temperature (발생기 온도저감 및 고온열수 획득을 위한 Hybrid GAX 사이클 해석)

  • 강용태;윤희정;조현철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2002
  • The objectives of this paper are to develop an advanced GAX cycle named HGAX (Hybrid Generator Absorber heat exchanger) cycle, and to study the effect of key parameters on the cycle performance and the hot-water temperature from the condenser. New types of the HGAX cycle are developed by adding a compressor between the generator and the condenser- Type C (performance improvement and reduction of the generator temperature) and Type D (Hot-water temperature application). The solution temperature in the generator outlet is reduced to 168$^{\circ}C$ with the COP improvement of 19% compared to the standard GAX cycle. The hot-water temperature from the condenser is raised to 106$^{\circ}C$ for panel heating (Ondol heating) application.

A Study on the Performance of an Absorption Heat Transformer with Process Simulation (프로세스 시뮬레이션에 의한 제 2종 흡수식 열펌프 성능에 관한 연구)

  • Cho Seung Yon;Kim Young in
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.3
    • /
    • pp.295-304
    • /
    • 1987
  • The purpose of this study is to develop a computer model for simulating the water-lit hium bromide absorption heat transformer (AHT) Including all major components and to find the flexibility in operation. The effect of source hot water temperature, cooling water temperature, useful hot water flow rate, cooling water flow rate and evaporator circulation flow rate were investigated. The coefficient of performance (COP), temperature boost $({\Delta}T\;=\;T_A\;-\;Ti)$ and concentration variations can be predicted. The performance study indicates that the performance of AHT increases for the waste hot water temperature increasing and with a decrease of the cooling water temperature. The effect on performances of useful hot water flow rape is significant except on temperature boost. Also the effects on performance of cooling water flow rate and evaporator circulation flow rate are small. It is shown that the computer program is valuable to predict the performance of absorp-tion heat transformer units at various working corditions.

  • PDF

A Calculation Method for Temperature Distribution of Hot Water Pipe under Unsteady Condition (비정상조건하의 온수배관의 온도분포에 관한 수치계산법 연구)

  • Choi, C.H.;Suh, S.J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 1999
  • Calculation method about the water temperature variable inside hot water pipe had proposed in the past does not correspond with branch pipe system, variable of water volume, variable of entrance water temperature, using and so on. A calculation method proposed in this paper can solve above problems, and calculate the kinds variation of the water temperature inside pipe in the real use state of the hot water pipe.

  • PDF

Study on the Operating Characteristics with Load Condition in Hybrid Solar Heating System during Spring Season (봄철 태양열 하이브리드 시스템의 부하조건 변화에 따른 운전특성 연구)

  • Pyo, Jong-Hyun;Kim, Won-Seok;Cho, Hong-Hyun;Ryu, Nam-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1418-1423
    • /
    • 2009
  • This study describes experimental study on the performance characteristics with load condition in hybrid solar heating system during spring season. The room temperatures, the hot water conditions and the lower part temperatures of heat storage tank were changed to analyze the system performances. As a results, the hot water was significantly affected by the ambient temperature. The indoor setting temperature affected the solar fraction. When the low part temperature of the storage tank increased, the temperature of the hot water rose and the temperature of the hot water in morning was affected by the ambient temperature.

  • PDF

Analysis of Efficiency of Solar Hot Water System based on Energy Demand (에너지 수요처의 사용특성에 따른 태양열 급탕시스템의 효율분석)

  • Jun, Yong-Joon;Park, Kyung-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.39-47
    • /
    • 2017
  • In a hot water system using solar energy, solar heat is not simply collected by the heat collecting plate, but by heat exchange between the solar collector (flat or vacuum type) and the hot water storage tank. Therefore, the amount of collected solar energy depends on the hot water usage patterns that determine the temperature of the thermal storage tank. Also, if the temperature of the hot water stored in the storage tank exceeds the dangerous temperature during the summer, the heat must be released for safety. If the temperature of the hot water in the storage tank is low, it is necessary to heat by the auxiliary heat source. In this study, three buildings are defined as hotel, swimming pool, and school facilities. And we calculated the released heat energy, auxiliary heat source, and pure storage heat energy based on different hot water usage patterns and installation angle of the solar collectors.

The Effects of Hot Water Supply Temperature on Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 공급온수온도가 실내 열환경에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • The Effects of hot water supply temperature on indoor thermal characteristics for floor radiant heating system in residential apartment were researched by computer simulation. The parametric study on hot water supply temperatures with different outdoor air temperatures was done with regard to energy performance and control characteristics, respectively. As a result, the maximum overshoot of indoor air temperature and energy consumption were reduced by adjusting the hot water supply temperatures with outdoor air temperatures.

A Study on the Performance of 100 W Thermoelectric Power Generation Module for Solar Hot Water System (태양열 온수 시스템에 적용 가능한 100 W급 열전발전 모듈 성능에 관한 연구)

  • Seo, Ho-Young;Lee, Kyung-Won;Yoon, Jeong-Hun;Lee, Soon-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.21-32
    • /
    • 2019
  • Solar hot water system produces hot water using solar energy. If it is not used effectively, overheating occurs during the summer. Therefore, a lot of research is being done to solve this. This study develops thermoelectric power module applicable to solar hot water system. A thermoelectric material can directly convert thermal energy into electrical energy without additional power generation devices. If there is a temperature difference between high and low temperature, it generate power by Seebeck effect. The thermoelectric module generates electricity using temperature differences through the heat exchange of hot and cold water. The water used for cooling is heated and stored as hot water as it passes through the module. It can prevent overheating of Solar hot water system while producing power. The thermoelectric module consists of one absorption and two radiation part. There path is designed in the form of a water jacket. As a result, a temperature of the absorption part was $134.2^{\circ}C$ and the radiation part was $48.6^{\circ}C$. The temperature difference between the absorption and radiation was $85.6^{\circ}C$. Also, The Thermoelectric module produced about 122 W of irradiation at $708W/m^2$. At this time, power generation efficiency was 2.62% and hot water conversion efficiency was 62.46%.

Study on Improvement of Surface Temperature Uniformily in Flate-Plate Heat Pipe Hot Chuck (평판형 히트파이프식 핫척의 표면온도 균일화 향상을 위한 연구)

  • Kim, D.H.;Rhi, S.H.;Lim, T.K.;Lee, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2369-2374
    • /
    • 2008
  • In the precision hot plate for wafer processing, the temperature uniformity of upper plate surface is one of the key factors affecting the quality of wafers. Precision hot plates require temperature variations less than ${\pm}1.5%$ during heating to $120^{\circ}C$. In this study, we have manufactured the flat plate heat pipe hot chuck of circle type(300mm) and investigated the operating characteristics of flat plate heat pipe hot chuck experimentally. Various liquids(aceton, FC-40, water) were used as the working fluid and charging ratio was changed($14{\sim}36\;vol.%$). Several cases were tested to improve temperature uniformity. Major working fluid to be investigated was water. Using water, various parameters such as charging ratio, wafer operation on-off time, different working fluids. In case of water, the temperature uniformity was ${\pm}1.5%$, response time of wafer were investigated.

  • PDF