• Title/Summary/Keyword: Hot-dip galvanized

Search Result 54, Processing Time 0.034 seconds

The Development of Coating Weight Model and Control Logics in Continuous Galvanizing Line

  • Kook, Chae-Hong;Tae, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.121.5-121
    • /
    • 2001
  • For the last decade, remarkable progress in the coating weight uniformity of hot dip galvanized product has been made to overcome the tightening quality constraints and produce cost-effective galvanized products. This progress results from research and development works for more efficient air knife, more accurate model of coating process, more precise measurement of coating weight and more efficient control logics. The activities for an efficient mathematical model to predict coating weight and several control logics which has been implemented on the No.1 CGL, No. 2 CGL, and PGL at KwangYang Steel Works are reviewed in this article.

  • PDF

Effects of Niobium Microalloying on Microstructure and Properties of Hot-Dip Galvanized Sheet

  • Mohrbacher, Hardy
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Niobium microalloying is effective in hot-rolled and cold-rolled steels by providing a fine-grained microstructure resulting in increased strength. To optimize the strengthening effect, alloy design and hot-rolling conditions have to be adapted. As a key issue the dissolution and precipitation characteristics of Nb are discussed in particular with regard to the run-out table conditions. It is then considered how the hot-rolled microstructure and the solute state of Nb interact with the hot-dip galvanizing cycle. The adjusted conditions allow controlling the morphology and distribution of phases in the cold-rolled annealed material. Additional precipitation hardening can be achieved as well. The derived options can be readily applied to produce conventional HSLA and IF high strength steels as well as to modern multiphase steels. It will be explained how important application properties such as strength, elongation, bendability, weldability and delayed cracking resistance can be influenced in a controlled and favorable way. Examples of practical relevance and experience are given.

Experimental Study of Extradosed Bridge Anchor System (엑스트라도조교 사재 정착구 시스템에 대한 실험적 연구)

  • Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.146-154
    • /
    • 2010
  • In this study the experimental results of fatigue specimen for the Strand Stay Cable Assembly of Extadosed bridges is investigated. The fatigue test and tensile experiment is conducted to 6 kinds of specimens. Test specimen OVM250-31 Strand Cable System manufactured by china OVM B-Machinery Co., Ltd, and OVM250-42 Parallel Strand Stay Cable Assembly manufactured by china OVM B-Machinery Co., Ltd, are passed for fatigue test and rupture tensile test. But Test specimen OVM250-42 Parallel Strand Stay Cable Assembly manufactured by korean A-Machinery Co., Ltd, is not passed for fatigue test conducted according to the "Recommendation for Stay Cable Design. The test result are compared to the fatigue criteria of PHI 2001 for cyclic load, and it is concluded that the current korean design code will be needed for representing the fatigue load in Hot Dip Galvanized Strand Stay Cable. It is verified that the new korean specification and quality criteria of Strand Stay Cable and exact experimental applied process will be needed.

Application of the induction type furnace for HGL (용융아연도금라인(HGL)의 Induction Type Furnace 적용)

  • 이만식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.111-118
    • /
    • 1999
  • This article describes the basic engineering concepts to be considered in the application of an induction heating furnace in the hot-dip galvanizing line. Experience in the Dongkuk project in Pohang, has shown that this arrangement has many advantages over the conventional method of using a combustion-gas heated furnace. Investment and operating costs are lower, the line length is much shorter, line operation is more convenient, air pollution is reduced, and the coated strip at of top-quality. As these benefits become well known, it is anticipated that the concept of induction heating will be more widely used in both new and revamped process lines. Induction heating is suitable for the production of Commercial Quality hot galvanized coils. More research is required to extend the present concept to the production of higher forming grades such as Drawing, Deep Drawing and Extra Deep Drawing Quality steels. A combination of induction heating and combustion-gas heating may lead to the way to the processing of these qualities of strip.

  • PDF

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Study on Corrosion and Structural Performance in Hot-Dip Galvanizing Steel (용융아연도금 철근의 부식 특성 및 구조적 특성에 대한 연구)

  • Kwon, Seung-Jun;Lee, Sang-Min;Lee, Myung-Hoon;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.613-621
    • /
    • 2012
  • Steel corrosion is one of the most critical deteriorations in concrete structures due to the problems associated with both durability and structural safety issues. For protection of steel against corrosion problems, researches to improve concrete durability and steel corrosion protection such as rebar coating by hot-dip galvanizing steel have been carried out. This study was performed to quantitatively evaluate anti-corrosion and structural performance of concrete structures reinforced with hot-dip galvanizing steel rebar. Preliminary tests for several metal coatings such as zinc, aluminum, and their alloy (Zn 45% + AL 55%) were performed. After evaluation of corrosive characteristics, Zn was selected for the coating material and the corrosion behaviors in Zn-coated steel were evaluated in various conditions. Furthermore, tensile and adhesive strengths were evaluated for the normal and the hot-dip galvanized steel. The crack patterns and structural behaviors of RC specimens with the normal and coated steel were investigated. Also, corrosion characteristics including corrosion in various coating metal and potential change in metal with notch were evaluated. Structural performances of tensile and adhesive strengths as well as RC beam behavior under flexural/shear loading were evaluated. The test and evaluation results showed that the applicability of hot-dip galvanized steel rebar can be used as corrosion resistant reinforcements for RC structures.

Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method (용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상)

  • Park, ae-Hyeok;Kim, Soon-Ho;Jeong, Jae-In;Yang, Ji-Hoon;Lee, Kyung-Hwang;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

Characterization of the Galvanizing Behavior Depending on Annealing Dew Point and Chemical Composition in Dual-Phase Steels

  • Shin, K.S.;Park, S.H.;Jeon, S.H.;Bae, D.C.;Choi, Y.M.
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.247-253
    • /
    • 2010
  • The characteristics of selective oxidation prior to hot-dip galvanizing with the annealing atmosphere dew point and chemical composition in dual-phase steels and their effect on the inhibition layer formation relevant to coating adhesion have been studied using a combination of electron microscopic and surface analytical techniques. The annealed and also galvanized samples of 3 kinds of Si/Mn ratios with varied amounts of Si addition were prepared by galvanizing simulator. The dew point was controlled at soaking temperature $800^{\circ}C$ in 15%$H_2$ -85%$N_2$ atmosphere. It was shown that good adhesion factors were mainly uniformity of oxide particle distribution of low number density and low Si/Mn ratio prior to hot-dip galvanizing. Their effect was the greatly reduced coating bare spots and the formation of uniform inhibition layer leading to good adhesion of Zn overlay. The mechanism of good adhesion is suggested by two processes: the formation of inhibition layer on the oxide free surface uncovered with no $SiO_2$-containing particles in particular, and the inhibition layer bridging of oxide particles. The growth of inhibition layer was enhanced markedly by the delayed reaction of Fe and Al with the increase of Si/Mn ratio.

Study of Characteristics of Hot Dip Galvanized Steel Strip by Oxygen-free Finishing (비산화성 분위기에 의한 용융아연도금의 특성 연구)

  • 진영구;김흥윤
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.300-308
    • /
    • 1995
  • The effect of nitrogen finishing for the control of coating weight in a nitrogen sealing box on the coating surface property in hot dip galvanizing process has been studied. The coated surface is free of oxide marks and edge overcoated. The coating uniformity is excellent ; the standard deviation of the coating thickness along width of the specimen was $1~1.2\mu\textrm{m}$ in the box whereas $2.5~3\mu\textrm{m}$ in the air. Considering surface quality of the coating such as oxide mark, edge overcoated and zinc dust, the oxygen content between 40 and 200 ppm was suggested in the box in addition the oxygen content of at least 40 ppm or the minimum dew point of $-27^{\circ}C$ is required to prevent a zinc vaporization.

  • PDF