• 제목/요약/키워드: Hot-dip Galvanizing

검색결과 63건 처리시간 0.023초

알칼리탈지공정 자동화관리에 의한 표면처리용 강판의 탈지능 향상 (Improvement of the Degreasing Performance of Surface Treating Steel Sheet by the Automatic Control of Alkaline Degreasing Process)

  • 박노범;박대수;박정렬;유민수
    • 한국표면공학회지
    • /
    • 제29권2호
    • /
    • pp.132-139
    • /
    • 1996
  • Experiments on the automatic control of NaOH concentration and on the spraying condition of NaOH solution in the alkaline degreasing process of a continuous hot-dip galvanizing line have been carried out in order to improve degreasing performance of a galvanizing sheet steel using laboratory degreasing and galvanizing simulators. The concentration of NaOH for the good degreasing has been determined to be 6.0% and more and this concentration has been able to be automatically well controlled within $\pm$0.1% by employing a solution electrical conductivity meter under a flow injection analysis condition rather than by employing a sodium ion selective electrode in the degreasing simulator. Frequent blocking of the spraying nozzles of the solution has been reduced considerably by the set-up and periodical operation of an automatic valve system in the nozzle system. By applying this automatic valve system and by automatic controlling the NaOH concentration and other ordinary variables in the degreasing process, the degreasing performance has been increased from the conventional 76% to the new 85%.

  • PDF

Minimizing Zinc Consumption In Hot-Dip Galvanizing Lines

  • Bright, Mark;Ellis, Suzanne
    • Corrosion Science and Technology
    • /
    • 제10권2호
    • /
    • pp.43-46
    • /
    • 2011
  • Zinc consumption in a continuous galvanizing line is one of the highest operating cost items in the facility and minimizing zinc waste is a key economic objective for any operation. One of the primary sources of excessive loss of zinc is through the formation of top dross and skimmings in the coating pot. It has been reported that the top skimmings, manually removed from the bath, typically consist of more than 80% metallic zinc with the remainder being entrained dross particles ($Fe_2Al_5$) along with some oxides. Depending on the drossing practices and bath management, the composition of the removed top skimmings may contain up to 2 wt% aluminum and 1 wt% iron. On-going research efforts have been aimed at in-house recovery of the metallic zinc from the discarded top skimmings prior to selling to zinc recycling brokers. However, attempting to recover the zinc entrapped in the skimmings is difficult due to the complex nature of the intermetallic dross particles and the quality and volume of the recycled zinc is highly susceptible to fluctuations in processing parameters. As such, an efficient method to extract metallic zinc from top skimmings has been optimized through the use of a specialized thermo-mechanical process enabling a continuous galvanizing facility to conserve zinc usage on-site. Also, through this work, it has been identified that filtration of discrete dross particles has been proven effective at maintaining the cleanliness of the zinc. Future efforts may progress towards expanded utilization of filters in continuous galvanizing.

팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구 (A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE)

  • 이동원;강남철;김근영;권영두;권순범
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

비산화성 분위기에 의한 용융아연도금의 특성 연구 (Study of Characteristics of Hot Dip Galvanized Steel Strip by Oxygen-free Finishing)

  • 진영구;김흥윤
    • 한국표면공학회지
    • /
    • 제28권5호
    • /
    • pp.300-308
    • /
    • 1995
  • The effect of nitrogen finishing for the control of coating weight in a nitrogen sealing box on the coating surface property in hot dip galvanizing process has been studied. The coated surface is free of oxide marks and edge overcoated. The coating uniformity is excellent ; the standard deviation of the coating thickness along width of the specimen was $1~1.2\mu\textrm{m}$ in the box whereas $2.5~3\mu\textrm{m}$ in the air. Considering surface quality of the coating such as oxide mark, edge overcoated and zinc dust, the oxygen content between 40 and 200 ppm was suggested in the box in addition the oxygen content of at least 40 ppm or the minimum dew point of $-27^{\circ}C$ is required to prevent a zinc vaporization.

  • PDF

The Development of Coating Weight Model and Control Logics in Continuous Galvanizing Line

  • Kook, Chae-Hong;Tae, Shin-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.121.5-121
    • /
    • 2001
  • For the last decade, remarkable progress in the coating weight uniformity of hot dip galvanized product has been made to overcome the tightening quality constraints and produce cost-effective galvanized products. This progress results from research and development works for more efficient air knife, more accurate model of coating process, more precise measurement of coating weight and more efficient control logics. The activities for an efficient mathematical model to predict coating weight and several control logics which has been implemented on the No.1 CGL, No. 2 CGL, and PGL at KwangYang Steel Works are reviewed in this article.

  • PDF

용융안연 도금욕의 Ni첨가가 도금강판의 게면반응 및 내식성에 미치는 영향 (Effect of Ni Addition Interfacial Reaction and Corrosion Resistance in Hot Dip Galvanizing)

  • 이경구;시희봉;이도재
    • 한국표면공학회지
    • /
    • 제31권6호
    • /
    • pp.379-388
    • /
    • 1998
  • The iron-zinc interfacial reaction and corrosin properties in galvanizing bath containning Ni have been intestigated. The substrate steel plates were galvanized in Zn or Zn-0.018Al baths with various Ni contents. The corrosion resistance of galvanized specimens was also evaluated by $60^{\circ}$bending test for galvannealing speaaimens. The corrosion resistance was improved with Ni addition in pure Zn bath, while deteriorated with Ni addition in Zn-0.18Al bath. The anti-powdering property, on thhe otherhand, was improved with Ni addition in Zn-0.18Al bath, while deteriorated with Ni addition in pure Zn. It was found that the anti-powdering property was improved with increasing $\xi$ phase ratio in reaction layer.

  • PDF

연속 용융아연도금 공정에서 Fe용출 및 드로스 발생에 미치는 도금조건의 영향 (Influence of Coating Conditions on Fe Dissolution and Dross Formation in Continuous Hot-dip Galvanizing Process)

  • 전선호;김상헌
    • 한국표면공학회지
    • /
    • 제36권5호
    • /
    • pp.364-372
    • /
    • 2003
  • In continuous galvanizing process, dissolution of iron into molten zinc results in a fairly great amount of dross. In order to decrease dross, the amount of dissolved iron of strip in molten zinc was investigated in the range of 0∼0.22%Al content, 440∼$470^{\circ}C$ strip temperature and 3∼60 sec dipping time. Uniform Fe-Al-Zn inhibition layer was formed in the coating layer/strip interface not only in the grain boundary but also in the grain of substrate with the increase of Al content in the zinc pot, while the amount of iron dissolution was decreased. Inhibition layer was unstable as the dipping time and strip temperature increased and the amount of iron dissolution increased.

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.

고온 및 Zn Fume에 의한 소재들의 부식성 분석 (Corrosion Analysis of Materials by High Temperature and Zn Fume)

  • 백민숙
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.551-556
    • /
    • 2018
  • 대부분의 용융 아연 도금 설비에 사용되고 있는 소재는 SM45C(기계구조용 탄소강, KS규격)으로, 주로 저렴한 가격적인 측면에 의해 사용되고 있다. 용융 아연 도금의 특성상 해당 용탕에서 발생되어 올라오는 Zn Fume과 고온의 열에 의한 도금 설비의 산화가 발생되고 있으며 현재 용융 아연 도금 설비의 교체 주기의 시기는 6개월으로 많은 시간과 설비 비용이 낭비 되어오고 있다. 이에 본 연구에서는 다양한 소재들(Inconel625, STS304, SM45C)을 이용하여 고온과 Zn Fume 환경에서 강제로 산화 시켜 각각의 부식성을 확인하고 비교 분석하였으며, 각 소재들의 용융 아연 도금 현장 설비에 적용 가능성을 파악하고자 진행하였다. 강제 산화 실험은 650도의 대기로 내에 Zn 용탕을 두고, Ar 가스를 용탕 내에서 직접 버블링하여 Zn fume를 발생시켜 고온, Zn fume에 의한 부식을 행하는 실험을 하였다. 30일 후 Sample들을 꺼내어 표면의 산화층을 EDS, SEM으로 확인하고, 동전위분극 시험을 이용하여 부식성을 비교 분석하였다.

산업 설비 재료에 CCO박막의 적용을 위한 부식성 분석 (Corrosion analysis for application of CCO thin films to industrial equipment materials)

  • 백민숙
    • 한국산학기술학회논문지
    • /
    • 제19권6호
    • /
    • pp.98-103
    • /
    • 2018
  • 산업의 발전에 따라 설비 및 재료 등 따라서 재료 표면의 특성을 내식성 및 고강도, 내마모성 등을 향상 시키기 위하여 지금까지 많은 코팅 기술들이 발전해 왔다. 그 중 CCO(CaCoO, 이후 CCO) 박막 형성은 전자재료 영역에서 연구, 사용이 되어오고 있는데, 이 CCO 박막의 특징 중 하나가 고온의 열에 강하다는 것이 있다. 특히 CCO 박막을 형성 시키는 방법 또한 비교적 간단하여 고온의 산화 분위기에 도입이 가능 할 것으로 판단되었다. 따라서 본 연구에서는 이 CCO 박막의 코팅이 용융 아연 도금 설비에 적용을 하기 전에, 고온 및 Zn fume에 대한 부식성을 파악하여 용융 아연 도금 설비에 적용이 가능한지를 파악하기 위한 실험 및 분석을 실시 하였다. 우선 기본 소재 STS304 표면에 CCO 박막을 형성 시키고, 650도의 대기로에서 Zn fume의 분위기 내에서 산화 시킨 후 CCO 박막의 부식 정도를 확인 및 측정 하였다. 산화는 30일간 진행되었고, 30일 후 SEM을 이용하여 CCO박막의 형상을 확인 하였으며 동전위분극 실험을 통하여 부식성을 분석하였다.