• Title/Summary/Keyword: Hot-air

Search Result 1,849, Processing Time 0.032 seconds

The Effect of Cellophane Film Packing on Quality of Semi-Salted and Dried Mackerel during Processing and Storage (셀로판 필름보장이 반염건고등어의 가공 및 저장중의 품질에 미치는 효과)

  • 이응호;안창범;김복규;이채한;이호연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.139-147
    • /
    • 1991
  • The preservative effect of cellophane film packing on the quality of semi-salted and dried mackerel was studied. The product(P) of semi-salted and dried mackerel was prepared from raw mackerel by filleting, cleaning, soaking in 15%9v/w) salt solution for 30min, draining, packing with cellophane film (PT# 300, thickness:$20{\mu}{\textrm}{m}$) and drying for 4 hrs at $40^{\circ}C$ in hot air dryer. The product (C) was also prepared without cellophane film packing after draining. The product (C) and (P) were stored at $5.0{\pm}0.5^{\circ}C$. After processing and during storage, moisture content of product (P) was higher than that of product (C), but contents of VBN(volatile basic nitrogen), amino nitrogen and TMA of product (P) on dry basis were lower than those of product (C). Viable cell count, TBA value, peroxide value and decreasing rate of polyenoic acid of product (P) were also lower than those of product (C). In sensory evaluation, the shelf life of product (C) was about 9 days and that of product (P) was about 14 days. From the results of chemical and sensory evaluation, it was concluded that cellophane film packing was a good condition for preserving the quality of semi-salted and dried mackerel.

  • PDF

Studies on the Processing and Utilization of Seaweeds 1. Preparation of Powdered Sea Mustard, Undaria pinnatifida, Mixtures for Juice Type Beverage (해조류(海藻類)의 가공(加工) 및 이용(利用)에 관한 연구(硏究) 1. 미역분말쥬스제조(製造))

  • Lee, Eung Ho;Cha, Yong Jun;Kim, Jeong Gyun;Kwon, ChiI Sung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.4
    • /
    • pp.382-386
    • /
    • 1983
  • In order to utilize effectively sea mustard(Undaria pinnatifida) which is excellent in nutrition and medical action, powdered sea mustard juice was prepared and then its chemical composition and the stability of pigments were examined. Powdered sea mustard was made by washing fresh sea mustard with tap water to remove clay and sand, blanching at $85^{\circ}C$ for 20 sec in mixing solution(3% salt+1% $MgCO_3$), hot air drying($50-55^{\circ}C$, 3 hrs) after draining and pulverizing dried sea mustard to 200mesh. And then powdered sea mustard mixtures for juice type beverage was made by adding 0.75% of salt, 1.25% of sugar, 0.2% of ascorbic acid, 0.25% of flour of roasted barley and 0.8% of pulverized sea mustard to 100ml of water. Chemical composition of product was not scarcely changed during processing while amino-nitrogen content was increased and alginic acid and ash contents were decreased. The retention of chlorophyll and total carotenoid pigments of product against fresh sea mustard were 91.6% and 89.5% respectively. Judging from sensory evaluation, color, flavor, taste and dispersibility of powdered sea mustard juice were excellent and undesirable flavor of product was masked by addition of flour of roasted barley.

  • PDF

Effect of polymerization temperature on the mechanical properties of provisional prosthesis resins (중합 온도가 임시 보철용 수지의 기계적 성질에 미치는 영향)

  • Hong, Min-Ho;Ha, Jung-Yun;Kwon, Tae-Yub
    • Korean Journal of Dental Materials
    • /
    • v.44 no.4
    • /
    • pp.311-318
    • /
    • 2017
  • The purpose of this study was to examine the effects of the curing sequence and polymerization temperature on the flexural strength and microhardness of two provisional resins (Bis-acryl resin composite and polymethyl methacrylate (PMMA)). Polymerization was carried out under various conditions, in air at $25^{\circ}C$ (control) and in hot water (40, 50, 60, 70, and $80^{\circ}C$). The flexural strength test was conducted according to ISO-4049. The Knoop hardness was measured. For the Bis-acryl resin, the temperature up to $50^{\circ}C$ did not increase the flexural strength nor the hardness of the bis-acryl resin composite (p>0.05) but higher temperatures increased the strengths. For the PMMA resin, flexural strength increased with temperatures up to $70^{\circ}C$ and then decreased slightly. Bis-acryl resin composite had higher mechanical properties than the PMMA resin. The effect of heat was more pronounced in the bis-acryl resin composite than in the PMMA resin (p<0.05).

The Present Status and Development Plan in the Field of Climate Change Science in Korea analyzed by the IPCC-IV Reports (IPCC-IV 국가 보고서 분석에 의한 한국의 기후변화과학 분야의 현황과 발전방향)

  • Chung, Yun-Ang;Chung, Hyo-Sang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • The recent global warming may be estimated to give lots of impacts to the human society and biosphere of influencing climate change included by the natural climate variations through the human activity which can directly and/or indirectly play a major role of total atmospheric composition overall. Therefore it currently appears evidences such as hot wave, typhoon, and biosphere disturbance, etc. over the several regions to be influenced by global warming due to increasing the concentration of greenhouse gases in the atmosphere through inducing forest destruction, fossil fuel combustion, greenhouse gases emission, etc. since industrial revolution era. Through the working group report of IPCC (Intergovernmental Panel on Climate Change) for climate change was analyzed by the individual country's current status and figure out the important issues and problems related to the future trend of climate change science with advanced countries preparedness and research, In this study, the first working group report of IPCC focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. As this report was assessed and analyzed by including the progress of climate change science, the role of climate models and evolution in the treatment of uncertainties. This consists of the changes in atmospheric constituents(both aerosols and gases) that affect the radiative energy balance in the atmosphere and determine the Earth's climate, considering the interaction between biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/cloud interactions, the extensive range of observations snow available for the atmosphere and surface, for snow, ice, and frozen ground and for the oceans, respectively and changes in sea level, the paleoclimate perspective and assessment of evidence for past climate change and the extension, the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, the development plans and methods of improving expert and building manpower urgently and R&D fund expansion in detail for climate change science in Korea will be proposed.

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.

Dissipation and Processing Factor of Etofenprox and Fenitrothion Residue in Chinese Matrimony Vine by drying (건조에 따른 구기자 중 etofenprox와 fenitrothion의 잔류량 변화 및 가공계수)

  • Noh, Hyun Ho;Lee, Jae Yun;Park, Hyo Kyoung;Jeong, Hye Rim;Lee, Jung Woo;Jo, Seung Hyeon;Kwon, Hyeyoung;Kyung, Kee Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • BACKGROUND: This study was carried out to determine characteristics of residual pesticides in time-dependent manner and calculate half-lives of the residual pesticides in fresh and dried Chinese matrimony vine. In addition, processing factors were calculated based on the residual concentrations in them. METHODS AND RESULTS: The test pesticides, etofenprox and fenitrothion, were sprayed onto the Chinese matrimony vine plants at once or twice (at seven-day interval) and then samples were collected at 0 (after 3 hours), 1, 3, 5 and 7 days after the last spraying. Dried samples were prepared in hot-air drying oven at $60^{\circ}C$ for 48 hours until water content of less than 20%. Residual concentrations of etofenprox in fresh and dried samples decreased by 54.0-60.9% after 7 days of the last pesticide-application. In case of fenitrothion, the concentrations were found to have decreased by 69.2-76.5%. Processing factors of etofenprox were 2.6-3.0 for the one-time spraying and 2.5-3.0 for the two-time spraying and those of fenitrothion were found to be 1.5-22 for the one-time spraying and 1.6-2.0 for the two-time spraying. First half-lives of etofenprox and fenitrothion in fresh and dried samples ranged from 5.0 to 6.3 and from 3.4 to 4.0 days, respectively. The third half-lives were found to be 15.0-18.9 and 10.2-12.1 days, respectively. CONCLUSION: Residual concentrations of the tested pesticides in the studied crop decreased, but those in the dried samples appeared to have increased. In addition, processing factor and half life were constant regardless of spraying times.

Numerical Analysis for Improvement of Windshield Defrost Performance of Electric Vehicle (전기자동차 전면유리 제상성능 개선을 위한 전산수치 해석)

  • Kim, Hyun-Il;Kim, Jae-Sung;Kim, Myung-Il;Lee, Jae Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.477-484
    • /
    • 2019
  • As the residence time in the vehicle increases, the passenger desires a pleasant and stable riding environment in addition to the high driving performance of the vehicle. The windshield defrosting performance is one of the performance requirements that is essential for driver's safe driving. In order to improve the defrosting performance of the windshield of a vehicle, relevant elements such as the shape of the defrost nozzle should be appropriately designed. In this paper, CFD based numerical analysis is conducted to improve defrost performance of small electric vehicles. The defrost performance analysis was performed by changing the angle of the defrost nozzle and the guide vane that spray hot air to the windshield of the vehicle. Numerical simulation results show that the defrosting performance is best when the defrost nozzle angle is $70^{\circ}$ and the guide vane installation angle is $60^{\circ}$. Based on the analytical results, the defrosting experiment was performed by fabricating the defrost nozzle and the guide vane. As a result of the experiment, it is confirmed that the frost of windshield is removed by 80% within 20 minutes, and it is judged that the defrost performance satisfying the FVMSS 103 specification is secured.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

Comparison of Total Phenolics, Total Flavonoids Contents, and Antioxidant Capacities of an Apple Cultivar (Malus domestica cv. Fuji) Peel Powder Prepared by Different Powdering Methods (분말가공법에 따른 국내산 사과껍질분말의 총페놀, 총플라보노이드 및 항산화능 비교)

  • Youn, So Jung;Rhee, Jin-Kyu;Lee, Hyungjae
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • A cultivar (Malus domestica cv. Fuji) of apple was selected to make apple peel (AP) powder by three different powdering methods. Frozen AP was thawed and subsequently was dried or ground without drying. After AP was dried by hot-air drying at $60^{\circ}C$ or freeze-drying, the dried AP was ground using a conventional blender. Separately, the thawed AP was powered by using a cryogenic micro grinding technology (CMGT). The ground AP and three types of AP powder were extracted using deionized water, 20, 40, 60, 80, or 100% methanol, followed by vacuum evaporation. The total phenolics contents (TPC), total flavonoids contents (TFC), DPPH, and ABTS radical scavenging capacities of each extract were compared to determine an efficient powdering method. Lyophilized AP powder extract using 60% methanol showed the highest TPC and DPPH radical scavenging capacity. In contrast, 60% methanol extract of the powder by CMGT, resulting in the smallest particle, exhibited the highest TFC and ABTS radical scavenging capacity. This study suggests that the extraction yield of bioactive compounds from AP may be varied according to different powdering methods and that a new powdering process such as CMGT may be applicable to develop functional foods efficiently.

Impact of Protein and Lipid Contents on the Physical Property of Dried Biji Powder (건조비지분말의 물리적 특성에 대한 단백질과 지질 함량의 영향)

  • Kim, Jaehyun;Jeong, Jin Boo;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.344-352
    • /
    • 2018
  • The effects of chemical compositions (protein, lipid, and dietary fiber) on the physical properties of dried biji powders were investigated. The raw biji was freeze-dried (control) and hot-air dried (untreated). The untreated biji was further defatted and deproteinated. The prepared biji powders were analyzed for the proximate composition, total dietary fiber (TDF), water absorption index (WAI), water solubility index (WSI), swelling power, solubility (including the quantification of soluble carbohydrate and protein fractions), and final viscosity (using a rapid visco analyzer). Control and untreated biji powders exhibited the similar chemical compositions. The defatted biji possessed higher TDF, although its protein content did not significantly differ for control and untreated ones. The deproteinated biji consisted mainly of TDF. WAI and swelling power increased in the order: deproteinated > defatted > control > untreated biji powders. WSI and solubility increased in the order: control > untreated > defatted > deproteinated biji powders. The similar patterns were observed for soluble carbohydrate and protein fractions. The deproteinated biji revealed the highest viscosity over applied temperatures, while the untreated one was lowest. Overall results suggested that the physical properties of the dried biji powder were reduced by protein and fat, but enhanced by dietary fiber.