DOI QR코드

DOI QR Code

Comparison of Total Phenolics, Total Flavonoids Contents, and Antioxidant Capacities of an Apple Cultivar (Malus domestica cv. Fuji) Peel Powder Prepared by Different Powdering Methods

분말가공법에 따른 국내산 사과껍질분말의 총페놀, 총플라보노이드 및 항산화능 비교

  • Youn, So Jung (Department of Food Engineering, Dankook University) ;
  • Rhee, Jin-Kyu (Department of Food Science and Engineering, Ewha Womans University) ;
  • Lee, Hyungjae (Department of Food Engineering, Dankook University)
  • 윤소정 (단국대학교 식품공학과) ;
  • 이진규 (이화여자대학교 식품공학과) ;
  • 이형재 (단국대학교 식품공학과)
  • Received : 2017.08.13
  • Accepted : 2017.09.02
  • Published : 2017.11.30

Abstract

A cultivar (Malus domestica cv. Fuji) of apple was selected to make apple peel (AP) powder by three different powdering methods. Frozen AP was thawed and subsequently was dried or ground without drying. After AP was dried by hot-air drying at $60^{\circ}C$ or freeze-drying, the dried AP was ground using a conventional blender. Separately, the thawed AP was powered by using a cryogenic micro grinding technology (CMGT). The ground AP and three types of AP powder were extracted using deionized water, 20, 40, 60, 80, or 100% methanol, followed by vacuum evaporation. The total phenolics contents (TPC), total flavonoids contents (TFC), DPPH, and ABTS radical scavenging capacities of each extract were compared to determine an efficient powdering method. Lyophilized AP powder extract using 60% methanol showed the highest TPC and DPPH radical scavenging capacity. In contrast, 60% methanol extract of the powder by CMGT, resulting in the smallest particle, exhibited the highest TFC and ABTS radical scavenging capacity. This study suggests that the extraction yield of bioactive compounds from AP may be varied according to different powdering methods and that a new powdering process such as CMGT may be applicable to develop functional foods efficiently.

과일에는 플라보노이드, 탄닌, 카테킨 등의 폴리페놀 뿐만 아니라 여러 항산화능과 관련된 성분을 많이 함유하고 있으며, 과일의 껍질에는 과육부분보다 2-9배 이상 높은 각종 기능성 성분이 많은 것으로 보고되고 있다. 국내에서 사과는 가장 많이 생산되는 과일 중에 하나이며, 사과껍질에는 quercetin의 함량이 높은 것으로 알려져 있다. 하지만 국내에서 사과껍질의 항산화능을 분석하거나 이를 이용하여 식품에 적용한 연구는 부족한 실정이다. 따라서 국내산 사과껍질 원물 균질액, 동결건조분말, 열풍건조분말 및 초미세분말의 총페놀함량(TPC), 총플라보노이드함량(TFC), ABTS radical 소거능(ABTS), DPPH radical 소거능(DPPH)을 비교하고, 이를 통해 사과껍질을 식품 소재로 활용 시 최적 분말화 및 추출조건을 알아보고자 했다. TPC는 동결건조분말, 열풍건조분말의 추출물에서 가장 높게 나타났고, TFC는 초미세분말 추출물에서 가장 높게 나타났다. ABTS 라디컬 소거능은 초미세분말에서, DPPH 라디컬 소거능은 동결건조분말에서 가장 높게 측정되었다. 이상의 결과를 통해, 동일 품종의 사과껍질을 사용한 경우 원물의 가공방법 및 추출조건에 따라 각 기능성의 차이가 나타났다. 이중, 초미세분말에서 TFC와 ABTS 라디컬 소거능이 가장 높은 결과를 나타낸 것을 볼 때, 분말화 방법 등 가공조건의 차이에 의해 개발된 중간소재의 여러 기능성에서 차이가 날 수 있다는 결과를 얻었다. 따라서 본 연구를 통해 기능성이 향상된 분말화된 식품중간소재 개발 시 여러 가공조건에 의해 영향을 받을 수 있으므로, 이를 고려하는 것이 중요하다는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 농림축산식품부

References

  1. Alvarez-Parrilla E, Laura A, Torres-Rivas F, Rodrigo-Garcia J, Gonzalez-Aguilar GA. 2005. Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by ${\beta}$-cyclodextrin (${\beta}$-CD). J. Incl. Phenom. Macroycycl. Chem. 53: 121-129. https://doi.org/10.1007/s10847-005-1620-z
  2. Amiot MJ, Tacchini M, Aubert SY, Oleszek W. 1995. Influence of cultivar, maturity stage, and storage conditions on phenolic composition and enzymic browning of pear fruits. J. Agric. Food Chem. 43: 1132-1137. https://doi.org/10.1021/jf00053a004
  3. Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J. 2000. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J. Agric. Food Chem. 48: 5496-5500. https://doi.org/10.1021/jf000483q
  4. Boyer J, Liu RH. 2004. Apple phytochemicals and their health benefits. Nutr. J. 3: 5. https://doi.org/10.1186/1475-2891-3-5
  5. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  6. Burda S, Oleszek W, Lee CY. 1990. Phenolic compounds and their changes in apples during maturation and cold storage. J. Agric. Food Chem. 38: 945-948. https://doi.org/10.1021/jf00094a006
  7. Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. 2001. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. 131: 2109-2114. https://doi.org/10.1093/jn/131.8.2109
  8. Diaz-Mula H, Zapata P, Guillen F, Martinez-Romero D, Castillo S, Serrano M, Valero D. 2009. Changes in hydrophilic and lipophilic antioxidant activity and related bioactive compounds during postharvest storage of yellow and purple plum cultivars. Postharvest Biol. Technol. 51: 354-363. https://doi.org/10.1016/j.postharvbio.2008.09.007
  9. Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. 2003. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem. Pharmacol. 65: 1199-1206. https://doi.org/10.1016/S0006-2952(03)00039-X
  10. Eberhardt MV, Chang YL, Liu RH. 2000. Nutrition: Antioxidant activity of fresh apples. Nature 405: 903.
  11. Heo JC, Lee KY, Lee BG, Choi SY, Lee SH, Lee SH. 2010. Antiallergic activities of ultra-fine powder from persimmon. Korean J. Food Preserv. 17: 145-150.
  12. Heras-Ramirez ME, Quintero-Ramos A, Camacho-Davila AA, Barnard J, Talamas-Abbud R, Torres-Munoz JV, Salas-Munoz E. 2012. Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food Bioproc. Tech. 5: 2201-2210. https://doi.org/10.1007/s11947-011-0583-x
  13. Kim MJ, Kim YG, Kim HS, Cheong C, Jang KH, Kang SA. 2014. Effects of antioxidant activities in ethanol extract of apple peel, grape peel, and sweet potato peel as natural antioxidant. J. Korea Acad. Industr. Coop. Soc. 15: 3766-3773. https://doi.org/10.5762/KAIS.2014.15.6.3766
  14. Kim SH, Park I. 2013. Comparison of antioxidant activities of various meat broths served with oriental noodles. Korean J. Food Nutr. 26: 150-153. https://doi.org/10.9799/ksfan.2013.26.1.150
  15. Kim SR, Ha TY, Song HN, Kim YS, Park YK. 2005. Comparison of nutritional composition and antioxidative activity for kabocha squash and pumpkin. Korean J. Food Sci. Technol. 37: 171-177.
  16. Krokida MK, Maroulis ZB, Saravacos GD. 2001. The effect of the method of drying on the colour of dehydrated products. Int. J. Food Sci. Technol. 36: 53-59. https://doi.org/10.1046/j.1365-2621.2001.00426.x
  17. Le Bourvellec C, Guyot S, Renard C. 2004. Non-covalent interaction between procyanidins and apple cell wall material: Part I. Effect of some environmental parameters. Biochim. Biophys. Acta 1672: 192-202. https://doi.org/10.1016/j.bbagen.2004.04.001
  18. Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY. 2003. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 51: 6516-6520. https://doi.org/10.1021/jf034475w
  19. Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH. 2012. Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Korean J. Food Sci. Technol. 44: 540-544. https://doi.org/10.9721/KJFST.2012.44.5.540
  20. Lu LJW, Grady JJ, Marshall MV, Ramanujam VS, Anderson KE. 1995. Altered time course of urinary daidzein and genistein excretion during chronic soya diet in healthy male subjects. Nutr. Cancer 24: 311-323. https://doi.org/10.1080/01635589509514420
  21. Mayr U, Treutter D, Santos-Buelga C, Bauer H, Feucht W. 1995. Developmental changes in the phenol concentrations of 'Golden Delicious' apple fruits and leaves. Phytochemistry 38: 1151-1155. https://doi.org/10.1016/0031-9422(94)00760-Q
  22. Muller RH, Keck CM. 2004. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol. 113: 151-170. https://doi.org/10.1016/j.jbiotec.2004.06.007
  23. Park JY, Ryu HU, Shin HS, Lim HK, Son IC, Kim DI, Jeong HS, Lee JS. 2012. Effects of CuEDTA and FeEDTA foliar spray on antioxidant activities of apple. J. Korean. Soc. Food Sci. Nutr. 41: 1305-1309. https://doi.org/10.3746/jkfn.2012.41.9.1305
  24. Park MK, Kim CH. 2009. Extraction of polyphenols from apple peel using cellulase and pectinase and estimation of antioxidant activity. J. Korean. Soc. Food Sci. Nutr. 38: 535-540. https://doi.org/10.3746/jkfn.2009.38.5.535
  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  26. RenardCM, Baron A, Guyot S, Drilleau JF. 2001. Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int. J. Biol. Macromol. 29: 115-125. https://doi.org/10.1016/S0141-8130(01)00155-6
  27. Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  28. Schieber A, Hilt P, Streker P, Endress HU, Rentschler C, Carle R. 2003. A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innov. Food Sci. Emerg. Technol. 4: 99-107. https://doi.org/10.1016/S1466-8564(02)00087-5
  29. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299: 152-178.
  30. Spencer JP, Schroeter H, Shenoy B, Srai SKS, Debnam ES, Rice-Evans C. 2001. Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. Biochem. Biophys. Res. Commun. 285: 588-593. https://doi.org/10.1006/bbrc.2001.5211
  31. Stracke BA, Rufer CE, Bub A, Seifert S, Weibel FP, Kunz C, Watzl B. 2010. No effect of the farming system (organic/conventional) on the bioavailability of apple (Malus domestica Bork., cultivar Golden Delicious) polyphenols in healthy men: a comparative study. Eur. J. Nutr. 49: 301-310. https://doi.org/10.1007/s00394-009-0088-9
  32. Tsao R, Yang R, Young JC, Zhu H. 2003. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 51: 6347-6353. https://doi.org/10.1021/jf0346298
  33. Wolfe K, Wu X, Liu RH. 2003. Antioxidant activity of apple peels. J. Agric. Food Chem. 51: 609-614. https://doi.org/10.1021/jf020782a
  34. Zhang M, Zhang C-j, Shrestha S. 2005. Study on the preparation technology of superfine ground powder of Agrocybe chaxingu Huang. J. Food Eng. 67: 333-337. https://doi.org/10.1016/j.jfoodeng.2004.04.036

Cited by

  1. 사과 부위별 항산화 성분 및 항산화 활성 vol.31, pp.6, 2018, https://doi.org/10.9799/ksfan.2018.31.6.858
  2. 핑거루트(Boesenbergia pandura)와 생강(Zingiber oficinale Rosecoe)의 항산화 및 항균 활성 비교 vol.33, pp.1, 2017, https://doi.org/10.9799/ksfan.2020.33.1.105
  3. Antioxidant compounds and activities of pedicel and sepals from twelve varieties of colored cherry tomatoes vol.52, pp.6, 2017, https://doi.org/10.9721/kjfst.2020.52.6.604
  4. Quality and Antioxidant Characteristics of Apple Puree Containing Peel and Added Vitamin C vol.50, pp.9, 2021, https://doi.org/10.3746/jkfn.2021.50.9.992