DOI QR코드

DOI QR Code

Impact of Protein and Lipid Contents on the Physical Property of Dried Biji Powder

건조비지분말의 물리적 특성에 대한 단백질과 지질 함량의 영향

  • Kim, Jaehyun (Department of Food Science and Biotechnology, Graduate School, Kyonggi University) ;
  • Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University) ;
  • Kim, Hyun-Seok (Major of Food Science and Biotechnology, Division of Bio-convergence, College of Convergence and Integrated Science, Kyonggi University)
  • 김재현 (경기대학교 대학원 식품생물공학과) ;
  • 정진부 (국립안동대학교 생약자원학과) ;
  • 김현석 (경기대학교 융합과학대학 바이오융합학부 식품생물공학전공)
  • Received : 2018.10.25
  • Accepted : 2018.11.01
  • Published : 2018.11.30

Abstract

The effects of chemical compositions (protein, lipid, and dietary fiber) on the physical properties of dried biji powders were investigated. The raw biji was freeze-dried (control) and hot-air dried (untreated). The untreated biji was further defatted and deproteinated. The prepared biji powders were analyzed for the proximate composition, total dietary fiber (TDF), water absorption index (WAI), water solubility index (WSI), swelling power, solubility (including the quantification of soluble carbohydrate and protein fractions), and final viscosity (using a rapid visco analyzer). Control and untreated biji powders exhibited the similar chemical compositions. The defatted biji possessed higher TDF, although its protein content did not significantly differ for control and untreated ones. The deproteinated biji consisted mainly of TDF. WAI and swelling power increased in the order: deproteinated > defatted > control > untreated biji powders. WSI and solubility increased in the order: control > untreated > defatted > deproteinated biji powders. The similar patterns were observed for soluble carbohydrate and protein fractions. The deproteinated biji revealed the highest viscosity over applied temperatures, while the untreated one was lowest. Overall results suggested that the physical properties of the dried biji powder were reduced by protein and fat, but enhanced by dietary fiber.

건조비지분말의 물리적 특성에 대한 비지 소재의 화학적 성분들(조단백질, 조지방, 식이섬유)의 영향을 조사하였다. 동결진공건조된 비지(대조군)과 열풍건조된 비지(무처리군)의 일반성분과 식이섬유 함량들은 유의적인 차이를 보이지 않았으나, 탈지비지의 조단백질 함량은 대조군 및 무처리군과 유의적인 차이가 없었으나 조지방 함량이 감소한 만큼 상대적으로 탄수화물 및 총 식이섬유 함량이 증가하였다. 탈단백비지는 조단백질과 조지방이 1% 미만이었고 대부분 식이섬유로 구성되어 있었다. 수분흡수지수는 탈단백비지, 대조군, 탈지비지, 무처리군의 순서로 높았으며, 수분용해지수는 대조군, 무처리군, 탈지비지, 탈단백비지의 순서로 높았다. 팽윤력과 용해도는 건조비지분말의 각각의 수분흡수지수와 수분용해지수보다 높은 값을 나타내었고, 수분흡수지수와 수분용해지수에서 관찰된 양상과 동일하였다. $85^{\circ}C$에서의 가용성 탄수화물과 단백질 함량은 용해도에서 관찰된 양상과 동일하였으며, 건조비지분말로부터 용해된 가용성 성분들의 대부분은 가용성 탄수화물과 단백질로 구성되어 있었다. 건조비지분말-물 분산물의 점도는 탈단백비지, 대조군, 탈지비지, 무처리군의 순서로 증가하였으나, 무처리군과 대조군의 경우 $45^{\circ}C$까지만 점도를 발달시켰다. 또한 탈단백비지는 조사된 온도 범위에서 점도가 유의적으로 다르지 않았으나, 대조군은 온도가 증가하면서 점도가 증가하였다. 이상의 결과를 종합할 때, 이황화결합에 의해 가교된 단백질, 불용성 단백질의 존재와 함량은 건조비지분말의 물리적 특성을 저하시켰으며, 지질 성분에 의한 물리적 특성의 저하는 미미한 수준이었다. 또한 건조비지분말의 식이섬유 함량의 증가는 물리적 특성을 향상시키는 효과를 나타내었다. 따라서 대두가공공정 중 배출된 비지를 식품원료로 사용하기 위해서는 단백질 함량이 적은 비지를 선택하여 가능한 낮은 온도에서 건조하여야 할 것이다.

Keywords

Acknowledgement

Supported by : 농림축산식품부

References

  1. AOAC. 2000. Official method of analysis. 17th ed: AOAC International, Gaithersberg, MD, USA.
  2. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  3. Chan WM, Ma CY. 1999. Acid modification of proteins from soymilk residue (okara). Food Res. Int. 32: 119-127. https://doi.org/10.1016/S0963-9969(99)00064-2
  4. Guillon F, Champ M. 2000. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 33: 233-245. https://doi.org/10.1016/S0963-9969(00)00038-7
  5. Hashizume K, Watanabe T. 1979. Influence of heating temperature on conformational changes of soybean proteins. Agr. Biol. Chem. Tokyo 43: 683-690.
  6. Kim SY, Jeon MG, Lee SY. 2004. Isolation of the tofu-residue solubilization microorganism and optimization for solubilization of tufu-residue. Food Eng. Prog. 8: 189-195.
  7. Kim DS, Seol MH, Kim HD. 1996. Changes in quality of soybean curd residue as affected by different drying methods. J. Korean Soc. Food Nutr. 25: 453-459.
  8. Kweon M, Slade L, Levine H. 2011. Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding-A review. Cereal Chem. 88: 537-552. https://doi.org/10.1094/CCHEM-07-11-0092
  9. Lee SM, Baik MY, Kim HS, Min SC, Kim BY. 2014. Effect of high pressure homogenization on Biji paste and optimization of bread fortified with dietary fiber. Food Eng. Prog. 18: 95-101. https://doi.org/10.13050/foodengprog.2014.18.2.95
  10. Lee WJ, Choi MR, Sosulski FW. 1992. Separation of Tofu-residue (biji) into dietary fiber and protein fractions. Korean J. Food Sci. Technol. 24: 97-100.
  11. Lee SH, Lee MS. 2000. Utilization of the Tofu-residue for production of the bacteriocin I. Cultural conditions of Bacillus sp. for amylase. J. Fd. Hyg. Safety 15: 271-276.
  12. Lee SH. 2015. Antioxidant capacity and nutritive components from biji sub-micron suspension by ultra-high pressure homogenization process. Korean J. Food Preserv. 22: 714-720. https://doi.org/10.11002/kjfp.2015.22.5.714
  13. Lee SI, Lee YK, Kim SD, Lee JE, Choi J, Bak JP, Lim JH, Suh JW, Lee IA. 2013. Effect of fermented soybean curd residue (FSCR; SCR-meju) by Aspergillus oryzae on the anti-obesity and lipids improvement. J. Nutr. Health 46: 493-502. https://doi.org/10.4163/jnh.2013.46.6.493
  14. Lee GJ, Lim SM. 2006. Quality characteristics of Sulgidduk with added soybean curd residue powder. Korean J. Food Cookery Sci. 23: 583-590.
  15. Li H, Long D, Peng J, Ming J, Zhao G. 2012. A novel in-situ enhanced blasting extrusion technique-Extrudate analysis and optimization of processing conditions with okara. Innov. Food Sci. Emerg. 16: 80-88. https://doi.org/10.1016/j.ifset.2012.04.009
  16. Lu F, Liu Y, Li B. 2013. Okara dietrary fiber and hypoglycemic effect of okara foods. Bioact. Carbohydr. Dietary Fibre 2: 126-132. https://doi.org/10.1016/j.bcdf.2013.10.002
  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 365-375.
  18. Ma CY, Liu WS, Kwok KC, Kwok F. 1997. Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 29: 799-805.
  19. Mateos-Aparicio I, Mateos-Peinado C, Ruperez P. 2010. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innov. Food Sci. Emerg. 11: 445-450. https://doi.org/10.1016/j.ifset.2010.02.003
  20. Park J, Choi I, Kim Y. 2015. Cookies formulated from fresh okara using starch, soy flour and hydroxypropyl methylcellulose have high quality and nutritional value. LWT-Food Sci. Technol. 63: 660-666. https://doi.org/10.1016/j.lwt.2015.03.110
  21. Perez-Lopez E, Mateos-Aparicio I, Ruperez P. 2016. Okara treated with high hydrostatic pressure assisted by Ultraflo(R) L: Effect on solubility of dietary fibre. Innov. Food Sci. Emerg. 33: 32-37. https://doi.org/10.1016/j.ifset.2015.12.017
  22. Preece KE, Drost E, Hooshyar N, Krijgsman A, Cox PW, Zuidam NJ. 2015. Confocal imaging to reveal the microstructure of soybean processing materials. J. Food Eng. 147: 8-13. https://doi.org/10.1016/j.jfoodeng.2014.09.022
  23. Ryu MJ, Kim HI, Lee SP. 2007. Quality characteristics of cookies fortified with soymilk cake fermented by Bacillus subtilis GT-D. J. Korean Soc. Food Sci. Nutr. 36: 1070-1076. https://doi.org/10.3746/jkfn.2007.36.8.1070
  24. Shin DH, Lee YW. 2002. Quality attributes of bread with soybean milk residue-wheat flour. Korean J. Food Nutr. 15: 314-320.
  25. Ullah I, Yin T, Xiong S, Huang Q, Din ZU, Zhang J, Javaid AB. 2018. Effects of thermal pre-treatment on physicochemical properties of nano-sized okara (soybean residue) insoluble dietary fiber prepared by wet media milling. J. Food Eng. 237: 18-26. https://doi.org/10.1016/j.jfoodeng.2018.05.017
  26. Woo EY, Lee KA, Lee OH, Kim KS. 2001. Composition of okara produced from soymilk processing. Korean J. Food Nutr. 14: 562-567.

Cited by

  1. Quality Characteristics of Vegan Nutritional Bars with Fermented Soybean Curd Residue Powder vol.50, pp.8, 2018, https://doi.org/10.3746/jkfn.2021.50.8.849