• 제목/요약/키워드: Hot-Pressing

검색결과 582건 처리시간 0.027초

확산과 Power- law 크립을 고려한 압분체 열간정수압압축 공정의 해석 (Analysis of Hot Isostatic Pressing of Powder Compacts Considering Diffusion and Power-Law Creep)

  • 서민홍;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.66-69
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at 1125 $!`\acute{\dot{E}}$. The results of the calculations were verified using literature data It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2749-2761
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing. Finite element results by using the proposed model also well predicted experimental data in the literature for densification behavior of nanocrystalline zirconia powder during pressureless sintering and sinter forging.

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

Synthesis and Mechanical Properties of Nano Laminating $Cr_2AlC$ using $CrC_x/Al$ Powder Mixtures

  • Han, Jae-Ho;Park, Sang-Whan;Kim, Young-Do
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.868-869
    • /
    • 2006
  • [ $Cr_2AlC$ ] was synthesized by a reactive hot pressing of $CrC_x(x=0.5)$ and Al powder mixture used as starting materials at the temperature range of $1200^{\circ}C{\sim}1400^{\circ}C$ under 25 MPa in Ar atmosphere. Fully dense $Cr_2AlC$ with high purity was synthesized by hot pressing $CrC_x$ and Al powder mixture at the temperature as low as $1200^{\circ}C$. The average grain size of synthesized bulk $Cr_2AlC$ was varied in the range of $10-100{\mu}m$ depending on hot pressing temperatures. The maximum flexural strength of synthesized bulk $Cr_2AlC$ exceeded 600 MPa.

  • PDF

Formation of $Fe_3AlC$ Base Alloy by Mechanical Alloying and Vacuum Hot Pressing

  • Isonishi, Kazuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1290-1291
    • /
    • 2006
  • Fabrication of $Fe_3AlC$ matrix in-situ composite, reinforced by a FeAl phase, was studied by using the powder metallurgical processing route. Especially, in order to disperse the second phase more finely, we chose the mechanical alloying process. We investigated the microstructural and mechanical properties of the consolidated material. After consolidation by vacuum hot pressing, the compact showed almost full density and consisted of a $Fe_3AlC$ matrix and FeAl second phase (average particle size was less than 1m). The compact showed HV746, which was higher than that of the arc melted $Fe_3AlC$ monolithic material, HV603.

  • PDF

Tribological Properties of Ti(C,N)-based Cermet after Hot Isostatic Pressing at High Nitrogen Pressure

  • Xiong, Wei-hao;Zheng, Li-yun;Yan, Xian-mei
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.663-664
    • /
    • 2006
  • Sintered Ti(C,N)-based cermets were treated with hot isostatic pressing (HIP) at different nitrogen pressures. The tribological properties of the treated cermets have been evaluated. The results show that a hard near-surface area rich in TiN formed after HIP treatment. The cermets treated at higher pressure had a relatively lower friction coefficient and specific wear rate. In all cases the microhardness of treated cermets is higher than that without HIP natridation. The wear mechanisms of cermets were hard particle flaking-off and ploughing. It was also found that the HIP natridation is well-suited for improving the tribological properties of cermets.

  • PDF

Thermoelectric Properties of Ni-doped $CoSb_3$ Prepared by Encapsulated Induction Melting and Hot Pressing

  • Kim, Mi-Jung;Park, Kwan-Ho;Jung, Jae-Yong;You, Sin-Wook;Lee, Jung-Il;Ur, Soon-Chul;Kim, Il-Ho
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.688-689
    • /
    • 2006
  • Ni-doped $CoSb_3$ was prepared by the encapsulated induction melting and hot pressing, and its doping effects on the thermoelectric properties were investigated. Single phase $\delta-CoSb_3$ was successfully obtained by the subsequent heat treatment at 773K for 24 hours. Nickel atoms acted as electron donors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by the appropriate doping.

  • PDF

AlN-BN계 세라믹스의 기계가공성과 강도 (Machinability and Strength of AlN-BN Ceramics)

  • 감직상;하정수;정덕수;한경섭
    • 한국세라믹학회지
    • /
    • 제31권2호
    • /
    • pp.177-184
    • /
    • 1994
  • AlN-BN ceramics with BN contents in the range of 10 to 40 wt% were prepared by hot pressing using no additive, or 3 wt%, Y2O3 or CaO, which are common densification aids for AlN. And their machinability, bend strength, and microstructures were investigated. Both the main and radial cutting forces decreased with increasing BN content in all three kinds of samples. For the BN contents of 30 wt% or above, the cutting forces were lower than that of a mild steel tested at a same condition. Especially in the case of main forces, the values were less than a quarter of that of a mild steel, indicating excellent machinability. Bend strength (when the tensile surfaces of specimens were perpendicular to the hot pressing direction) also decreased with BN content mainly due to the much lower Young's modulus of BN compared to AlN. With the composition of 30 wt% BN at which the AlN-BN ceramics started to show better machinability than a mild steel, the bend strength was 150 to 160 MPa, which is greater than that of machinable glass-ceramics of a mica system. With tensile surfaces parallel to the hot pressing direction, however, the bend strength obtained for the samples processed with the sintering acids showed low values (about 40 MPa), since most BN particles had such orientation that their cleavage planes (i.e., basal planes) were perpendicular to the pressing direction.

  • PDF

Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane

  • Lee, Young-Hee;Kang, Bo-Kyung;Kim, Han-Do;Yoo, Hye-Jin;Kim, Jung-Soo;Huh, Jae-Ho;Jung, Young-Jin;Lee, Dong-Jin
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.616-622
    • /
    • 2009
  • In-depth understanding of the influence of hot pressing and melt processing on the properties of thermoplastic polyurethane (TPU) is critical for effective mechanical recycling of TPU scraps. Therefore, this study focused on the effects of hot pressing and melt mixing on molecular weight (MW), polydispersity index (PDI), melt index (MI), characteristic IR peaks, hardness, thermal degradation and mechanical properties of TPU. The original TPU pellet (o-TPU) showed two broad peaks at lower and higher MW regions. However, four TPU film samples, TPU-0 prepared only by hot pressing of o-TPU pellet and TPU-1, TPU-2 and TPU-3 obtained by hot pressing of melt mixed TPUs (where the numbers indicate the run number of melt mixing), exhibited only a single peak at higher MW region. The TPU-0 film sample had the highest $M_n$ and the lowest PDI and hardness. The TPU-1 film sample had the highest $M_w$ and tensile modulus. As the run number of melt mixing increased, the peak-intensity of hydrogen bonded C=O stretching increased, however, the free C=O peak intensity, tensile strength/elongation at break and average MW decreased. All the samples showed two stage degradations. The degradation temperatures of TPU-0 sample (359 $^{\circ}C$ and 394 $^{\circ}C$)were higher than those of o-TPU (342 $^{\circ}C$ and 391 $^{\circ}C$). While all the melt mixed samples degraded at almost the same temperature (365 $^{\circ}C$ and 381 $^{\circ}C$). The first round of hot pressing and melt mixing was found to be the critical condition which led to the significant changes of $M_n$/$M_w$/PDI, MI, mechanical property and thermal degradation of TPU.

Effect of Different Pressing Processes and Density on Dimensional Stability and Mechanical Properties of Bamboo Fiber-based Composites

  • Zhang, Ya-Hui;Huang, Yu-Xiang;Ma, Hong-Xia;Yu, Wen-Ji;Qi, Yue
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권4호
    • /
    • pp.355-361
    • /
    • 2018
  • In this study, the dimensional stability and mechanical properties of bamboo fiber-based composites (BFBCs) were studied at two pressing manufacturing processes, i.e., hot- and cold- pressing, and were compared with three density parameters (1.0, 1.1, and $1.2kg/m^3$). Width swelling ratio (WSR), thickness swelling ratio (TSR), and water absorption ratio (WAR) were calculated for water immersions of 4 and 28 h. WSR, TSR, and WAR for specimens immersed for 28 h were higher than those for 4 h treatment, which shows that the immersion time has a significant influence on the dimensional stabilities of BFBCs. Moreover, the positive linear relations between density and dimensional were observed at both the pressing ways, indicating that the WSR, TSR, and WAR decreased with an increase in the density of BFBCs. The compressive strength, shear strength, modulus of rupture (MOR), and modulus of elasticity (MOE) were determined. The compressive strength, MOR, and MOE of hot-pressed specimens were significantly higher than those for the cold-pressed specimens, which are also directly proportional to density. Moreover, the samples with the highest density of $1.2kg/m^3$ performed high values on mechanical properties in both the manufacturing methods.