Synthesis and Mechanical Properties of Nano Laminating Cr₂AlC using CrC_x/Al Powder Mixtures

Jae-Ho Han^{1,a}, Sang-Whan Park^{2,b}, and Young-Do Kim^{1,c}

^{1,2}Division of Materials Science and Engineering, Hanyang Univ., Seoul 133-791, Korea ²Multifunctional Ceramics Research Center, KIST, Seoul, Korea ^ajh_han@kist.re.kr, ^bspark@kist.re.kr, ^cydkim1@hanyang.ac.kr

Abstract

 Cr_2AlC was synthesized by a reactive hot pressing of CrC_x (x=0.5) and Al powder mixture used as starting materials at the temperature range of 1200 °C~1400 °C under 25 MPa in Ar atmosphere. Fully dense Cr_2AlC with high purity was synthesized by hot pressing CrC_x and Al powder mixture at the temperature as low as 1200 °C. The average grain size of synthesized bulk Cr_2AlC was varied in the range of 10-100 μ m depending on hot pressing temperatures. The maximum flexural strength of synthesized bulk Cr_2AlC exceeded 600 MPa.

Keywords: Cr₂AlC, ternary carbide, synthesis, mechanical properties

1. Introduction

The ternary carbides and nitrides with layered structure have drawn much attention as they possess many good properties of both metals and ceramics [1-7]. Most of the previous studies on ternary carbide have been concentrated on Ti₃SiC₂ and Ti₃AlC₂ as demonstrated by the many investigations done on the synthesis process for those carbides has been intensively investigated. However, it has been reported that Ti-based ternary carbides such as Ti₃SiC₂, Ti₃AlC₂, and Ti₂AlN do not have a good high temperature oxidation resistance enough to be used at the temperature of above 1100 °C [7-11]. Recently, it was reported that bulk Cr₂AlC, which was synthesized by a hot pressing of Cr, Al, and graphite mixture at 1400 °C for 1 hr under 20 MPa in Ar atmosphere [12], was found to be difficult to synthesize with high purity. In this study, bulk Cr₂AlC with high purity was prepared by hot pressing of CrCx and Al powder mixture at the temperature range between 1200 °C and 1400 °C, and, the mechanical properties of fabricated bulk Cr₂AlC were investigated.

2. Experimental and Results

Fig. 1 shows the XRD patterns of synthesized bulk Cr_2AlC that was produced by hot pressing a synthesized CrC_x and Al powder mixture under 25 MPa in an Ar atmosphere at the temperature range between $1200{\sim}1400~^{\circ}C$. As shown in Fig. 1, the bulk Cr_2AlC was successfully synthesized throughout the entire processing temperature employed in this study. It was found that the specimen, which was hot pressed at $1200~^{\circ}C$, consisted of mostly

Cr₂AlC phase without any other crystalline phases. With increasing hot pressing temperature, the specimen consisted of mostly Cr₂AlC crystalline phase. Here, the trace amounts of Cr₇C₃ was found to appear as a secondary phase as shown in Fig.1(c). These observations suggest that Cr₂AlC starts to decompose above 1400 °C. The evaporation of Al seemed to be accelerated by the exothermal reaction between Cr and graphite during hot pressing. However, it was found that bulk Cr₂AlC with high purity could be synthesized simply by a hot pressing of CrC_x and Al powder mixture without forming secondary phase. However, chemical reactions in the CrC_x/Al system should be studied further to understand the synthesis mechanism of CrC_x from CrC_x/Al system exactly.



Fig. 1. XRD patterns of synthesized bulk Cr₂AlC by hot pressing of CrC_x and Al powder mixture.

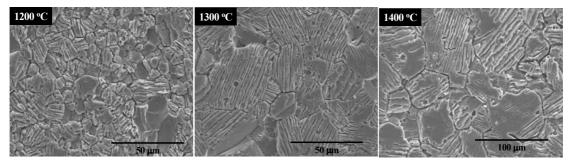


Fig. 2. SEM microstructures of bulk Cr_2AlC specimen synthesized by hot pressing of CrC_x and Al powder mixture at the temperature range of 1200 $^{\circ}C\sim1400$ $^{\circ}C$.

Fig. 2 shows SEM microstructures of etched polished surface of bulk Cr₂AlC synthesized by hot pressing of CrC_x and Al powder mixture at 1200 °C to 1400 °C. It was observed that each Cr2AlC grain consisted of layered structures, which has been reported as a typical microstructure of other ternary carbide in previous studies [1-6]. With increasing hot pressing temperature from 1200 °C to 1400 °C, the grain size of bulk Cr₂AlC was abruptly increased from 10 μ m to 50 μ m without changing the grain shape. The measured densities of synthesized bulk Cr₂AlC were in the range of 5.208~5.229 g/cm³, which was increased with hot pressing temperature. The relative densities bulk Cr₂AlC synthesized in this study was more than 99%. Fig. 3 show the flexural strength of bulk Cr₂AlC synthesized by hot pressing of CrC_x and Al powder mixture at 1200 °C~1400 °C. It was appeared that the flexural strength of bulk Cr₂AlC was varied with its relative density and grain size. The maximum of flexural strength of bulk Cr₂AlC was about 600 MPa which was twice higher than that reported in previous study [12].

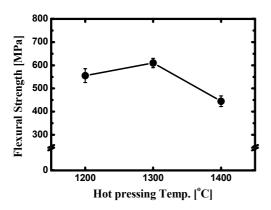


Fig. 3. Flexural strength of bulk Cr₂AlC as a function of Hot pressing temperature.

3. Summary

Bulk Cr_2AlC ternary carbide with high purity was successfully synthesized by hot pressing of newly prepared CrC_x and Al powder mixture under 25 MPa at the temperature range of $1200~^{\circ}C \sim 1400~^{\circ}C$. The relative density of bulk Cr_2AlC synthesized in this study was above 99% of the theoretical density of Cr_2AlC . Synthesized bulk Cr_2AlC was found to have typical layered structure which has been reported in other ternary carbides such as Ti_3AlC_2 and Ti_3SiC_2 . The average grain size of synthesized bulk Cr_2AlC was varied in the range of 10- $100~\mu m$ depending on hot pressing temperatures. The flexural strength of synthesized bulk Cr_2AlC was appeared to be varied depending on the relative density as well as grain size. The maximum flexural strength of synthesized bulk Cr_2AlC was over 600 MPa.

4. References

- 1. M.W. Barsoum, D. Brodkin and T. El-Raghy: Scripta Mat. Vol. 36 [5] (1997), p.535
- 2. T. El-Raghy, A. Zavaliangos, M.W. Barsoum and S.R. Kalidindi: J. Am. Ceram. Soc. Vol. 80 [2] (1997), p. 513
- 3. J. Lis, Y. Miyamoto, R. Pampuch, and K. Tanihata: Mat. Lett. Vol. 22 (1995), p. 163
- 4. M.W. Barsoum and T. El-Raghy: J. Am. Ceram. Soc. Vol. 79[7] (1996), p. 1953
- I. Salama, T. El-Raghy, M.W. Barsoum: J. Allo. and Comp. Vol. 347 (2002), p. 271
- 6. N. Tzenov and M.W. Barsoum: J. Am. Ceram. Soc. Vol. 83 [4] (2000), p. 825
- 7. Z. Sun, Y. Zhou and M. Li: Acta Mater. (2001), p. 494347
- 8. T. Chen, P.M. Green, J.L. Jordan, J.M. Hampikian, and N.N. Thadhani: Metal. Mat. Trans. A Vol. 33a (2002), p. 1737
- 9. S. Li, L. Cheng and L. Zhang: Mat. Sci. Eng. Vol. A341 (2003), p. 112
- 10. S. Li, L. Cheng and L. Zhang: Comp. Sci. Tech. Vol 63 (2003), p. 813
- 11. X.H. Wang, Y.C. Zhou: Corros. Sci. Vol. 45 (2003), p. 891
- W. Tian, P. Wang, G. Zhang, Y. Kan, Y. Li, D. Yan: Scripta Mat. Vol. 54 (2006), p. 841