• Title/Summary/Keyword: Hot-Fire Simulation

Search Result 26, Processing Time 0.026 seconds

A Numerical Study on Combustion-Stability Rating of Impinging-Jet Injectors Using Hot-Fire Simulation (연소해석을 이용한 충돌형 제트분사기의 연소 안정성 평가에 관한 수치적 연구)

  • Choi, Hyo-Hyun;Sohn, Chae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.24-31
    • /
    • 2010
  • Combustion-stability rating of impinging-jet injector is conducted numerically using hot-fire simulation in a subscale chamber with the five-element injector head. A sample F(fuel)-O(dxidizer)-O-F impinging-jet injector is adopted. In this work, instantaneous chemical reaction is adopted for hot-fire simulation based on the assumption that mixing process of fuel and oxidizer streams is controlling. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions. The present stability boundaries are in a good agreement with air-injection and hot-fire experimental data. The proposed numerical method can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

The 1D-3D Simulation for Smoke Ventilation in a Rescue Station of a Railroad Tunnel under the Fire (장대 터널 내 구난역의 열차 화재 시 제연을 위한 1D-3D 연계 해석)

  • Jung, Jae-Hyuk;Hur, Nahm-Keon;Lee, Jung-Pyo;Kim, Jin-Kon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.665-671
    • /
    • 2010
  • In the present study a 1D-3D numerical simulation was performed to analyze the fire safety in a rescue station of a long railroad tunnel equipped with a mechanical ventilation. The behavior of hot air was studied for the emergency operation mode of ventilation system in case of fire in the rescue station. The 1D simulation was carried out for entire tunnel region. Detailed 3D CFD simulation was performed for the rescue station area in the central region of the tunnel by using the result of the 1D simulation as the boundary condition of the 3D simulation. Various type of cross passage installation were evaluated for the prevention of smoke diffusion to suggest the optimized interval of the cross passages in the rescue tunnel.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.

A NUMERICAL STUDY ON THE FIRE EMERGENCY IN THE UNDERGROUND STATION WITH TRACKWAY EXHAUST SYSTEM (TES) (선로부 TES를 갖는 지하철 역사내 화재의 수치 해석)

  • Park, Jong-Tack;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.26-31
    • /
    • 2006
  • In the present study, a numerical simulation of the subway carriage fire is performed to determine the more effective operation of Trackway Exhaust System(TES) in underground stations. The four types of possible TES operation (OSUS, OSUE, OEUS and OEUE) is simulated and compared their removal capability of smoke and hot temperature for the carriage fire of 2MW. From the results, the distribution of temperature and smoke concentration is more dependent on the operation of fans located at upper side of the platform than those at lower side. It is also found from the results that for more efficient smoke control, the fans at upper side of the platform should be operated as an exhaust system. Whereas the fans at lower side can be operated as a supply system to aid upper exhaust fans.

A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle (지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성)

  • 이동호;유지오
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The smoke control system in subway platform is not only using for smoke exhaust facility but also using ventilation system. For this reason, smoke vent effectiveness is depending on its position, ventilating volume capacity and the vent method. In this study, the passenger's evacuation time was calculated for the case of fire on sloped subway train vehicle in subway platform. In order to recommend the mechanical smoke exhaust operation mode, SES (Subway Environmental Simulation) was used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire dynamics Simulator(FDS) was used the SES's velocity boundary conditions to calculate the smoke density and temperature under the condition of fire on stopped subway train vehicle at the platform. We compared smoke density and temperature distributions for each 6 types of smoke exhaust systems to clarify the characteristics of smoke and hot air exhaust effectiveness from the result of fire simulation.

A Real Situation Experimental Study on The Thermal Protection Performance of Firefighter Clothes and Gloves (소방방화복 및 소방장갑의 열 보호 성능에 대한 실제 화재 실험 연구)

  • Lee, Won Jae;Kang, Gu Hyun;Jang, Yong Soo;Kim, Wonhee;Choi, Hyun Young;Kim, Jae Guk;Kim, MinJi;Seo, Kyo;kim, Do hee;Lee, Joo-young;Choi, Jung Yoon
    • Journal of the Korean Burn Society
    • /
    • v.21 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • Purpose: This study aimed to evaluate the thermal protective function of firefighter clothes and gloves through real scale fire simulations. Methods: Firstly, the fire simulation by real scale flame was performed for firefighter clothes. A manikin equipped with firefighter clothes was directly exposed to flames which energy average is 84 Kw/m2. for 22 seconds. Heat flux gauges attached on the body measured surface temperature elevation. Secondly, we also performed the other fire simulation by hot plate exposure to firefighter gloves. Firefighter gloves with heat flux gauges exposed hot plate which temperature is 300℃ in both dry and moist conditions. Primary outcome was surface temperature change of manikin body (first simulation) and hand (second simulation) over times. Results: In the first flame simulation, the surface temperature of face and shoulders elevated more rapidly comparing with the other body surface area when initial period of flame shutter open. After 18sec of shutter open, the surface temperature of upper trunk elevated rapildy. After shutter closure, high surface temperature kept continuously on right side of face and left shoulder. In the second hot plate simulation, fingers and palms showed higher surface temperature than the other areas of hands in the both dry and wet conditions. Conclusion: This study suggests that the real scale flame enables firefighter clothes to lose their heat protective function suddenly after 18 seconds. Additionally, the protective function of firefighter gloves were relatively weaker in the palmar side of fingers than the other parts of hand. There should be additional study for evaluate thermal protection performance of firefighter clothes. And, further effort for reinforce palmar side of fingers of firefighter gloves should be done.

Characteristics of Thermal and Fluid Flows for Different Fire Locations in Underground Combined Cycle Power Plant (화원 위치에 따른 지하 복합 발전 플랜트 내 열유동 특성 연구)

  • Sung, Kun Hyuk;Bang, Joo Won;Lee, Soyeong;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.716-722
    • /
    • 2017
  • The present study numerically investigates the effect of obstacles located in the trajectory of fire plume flow on heat flow characteristics by using Fire Dynamics Simulation (FDS) software in an underground combined cycle power plant (CCPP). Fire size is taken as 10 MW and two different locations of fire source are selected depending on the presence of an obstacle. As the results, when the obstacle is in the trajectory of fire plume, hot plume arrives at the ceiling about 5 times slower in the upper of the fire in comparison to the results without obstacle. In addition, the average propagation time of ceiling jet increases by about 70 % with the distance from the ceiling in the upper of the fire, and it increases mainly about 4 times at the distance of 10 m. Consequently, it is noted that the analysis of heat flow characteristics in the underground CCPP considering fire scenarios is essential to develop the fire detection system for initial response on evacuation and disaster management.

The dynamic characteristics of upper hot gas layer and smoke propagation along with tunnel slope in case of fire (터널 내 화재 시 경사에 따른 온도층 및 연기유동 특성)

  • Rie, Dong-Ho;Kim, Ha-Young;Moon, Sung-Woong;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • The aim of this research is to analyse the dynamic characteristics of the hot upper smoke layer in case of fire in a tunnel. In order to get the result, computer simulation technique has been used. The fire scenarios were set on the basis of standard cross section of national and express highways through NIST's FDS. As the area of a tunnel increased, the influence of the wind velocity decreased. Furthermore, the influence of the slope of a road was reduced as the wind velocity increased. On the other hand, as the wind velocity increased, the influence of the slope of a road decreased. This phenomena is believed to be caused by the cooling effect of wind which is over 1 m/s in speed, hence, reducing the influence of the effect of slope.

A Study on the Structural Reform of Urban Transit Vehicle Considering Elevation of Fire Safety (화재안전성을 위한 도시철도 차량의 구조개선)

  • Lee, Keun-Oh;Kim, Kyu-Joong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.22-27
    • /
    • 2006
  • Even though the interior of urban transit vehicle has been changed as a preventing measure against fire to make it inflammable, there remains a possibility of fire breaking out in case of gasoline etc being brought in the subway. However, there is also the possibility that in case if fire toxic gas is generated and hot air spreads in carriage it will prove very dangerous for people sitting inside. This is a comparative study where we compare simulation results with model examining the time and direction the fire spreads when it breaks out. Also there is vertical distribution of temperature in carriage where the fire spreads out. This study is about demonstrating how to establish smokeless system in urban vehicle, about its necessity, and about vehicle system restructuring. This study also makes an effort to find more advanced method for efficient fire safety in trains. In existing vehicles, in case of fire, the smoke can't go out when doors are closed and hence it spreads in whole train. Even though the method of using ventilation or exhaust established inside the carriage to throw smoke out is much better than the way of opening end doors in each carriage, this study is trying to do research on second way. Through simulation we see that in second case, even though not as good as the first one, smoke can exit through gates. Even though the first method is better, the second can also be uses to let fire out. We can know that in the first case as the smoke can exit out faster, it provides more safety for people. So this system provides better fire safety condition.

The Study on Fire Phenomena in The Deeply Underground Subway Station (대심도 지하역사에서의 화재현상 연구)

  • Jang, Yong-Jun;Kim, Hag-Beom;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1773-1780
    • /
    • 2008
  • When the fire occur in the deeply underground subway station, the difficulties of passenger evacuation are expected because of many stairs to the exit. In this study, SOONGSIL-University station (7 line, 47m depth) is the one of the deepest subway stations of the each line in the Seoul metro. The numerical computational-simulation was performed for the fire driven flow in the subway station. Hot and smoke flow was analyzed from the simulation results. The proper plan of evacuation against fire was considered through the results. The fire driven flow was simulated using FDS code in which LES method was applied. The Heat Release Rate was 10MW and the ultrafast model was applied for the growing model of the fire source. The proper mesh size was determined from the characteristic length of fire size. The parallel computational method was employed to compute the flow and heat eqn's in the meshes, which are about 10,000,000, with 6cpu of the linux clustering machine.

  • PDF