• Title/Summary/Keyword: Hot surface

Search Result 1,461, Processing Time 0.026 seconds

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Effects of Natural Convection Cells on Temperature Uniformity in Hot Plate Chamber for Wafer Baking Process (반도체용 핫플레이트 챔버 내 자연대류가 핫플레이트 표면 온도 균일도에 미치는 영향)

  • Park, Jun-Su;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2512-2517
    • /
    • 2007
  • Effect of natural convention for hot plate surface temperature uniformity was studied by experiments that were adjusted height of chamber and temperature difference. The hot plate chamber is composed of the hot plate and the upper heater and adiabatic vertical wall. The hot plate diameter is 220mm and maintains temperature at $150^{\circ}C$. Flow pattern compares with surface temperature and confirms that natural convection affects on temperature uniformity of hot plate surface. In case, temperature non-uniformity of hot plate surface is due to heater pattern, lots of weak and small flow cells more improve temperature uniformity than stronger flow cells or non-developing flow cell. Improve temperature uniformity $1.2^{\circ}C$ when developing weak and small flow cells.

  • PDF

Surface Plasmon Effect in Hot Electron Based Photovoltaic Devices

  • Lee, Yeong-Geun;Jeong, Chan-Ho;Park, Jong-Hyeok;Park, Jeong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.162-162
    • /
    • 2011
  • Nanometer-sized noble metals can trap and guide sunlight for enhanced absorption of light based on surface plasmon that is beneficial for generation of hot electron flows. A pulse of high kinetic energy electrons (1-3 eV), or hot electrons, in metals can be generated after surface exposure to external energy, such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms. It is highly probable that the correlation between hot electron generation and surface plasmon can offer a new guide for energy conversion systems [1-3]. We show that hot electron flow is generated on the modified gold thin film (<10 nm) of metal-semiconductor (TiO2) Schottky diodes by photon absorption, which is amplified by localized surface plasmon resonance. The short-circuit photocurrent obtained with low energy photons (lower than bandgap of TiO2, ~3.1-3.2 eV) is consistent with Fowler's law, confirming the presence of hot electron flows. The morphology of the metal thin film was modified to a connected gold island structure after heating to 120, 160, 200, and 240$^{\circ}C$. These connected island structures exhibit both a significant increase in hot electron flow and a localized surface plasmon with the peak energy at 550-570 nm, which was separately characterized with UV-Vis [4]. The result indicates a strong correlation between the hot electron flow and localized surface plasmon resonance with possible application in hot electron based solar cells and photodetectors.

  • PDF

Numerical Study on the Hot Spots of Friction Surface in Disk Brakes (디스크 브레이크 마찰표면의 적열점에 관한 수치적 연구)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1692-1696
    • /
    • 2004
  • This paper presents the thermally induced hot spot characteristics of rubbing surface in the friction pad disk brake. During the braking period, the rubbing surface with irregular asperities that are strongly engaged in rough surface, wear, and deformed surface due to a friction heating may produce an irregular distorted geometry of the disk surface. The tribological interactions between the disk and the pads are unstable if the contact stress is severe, in which the irregularity develops the contact pressure distribution, leading eventually to localized contact, high temperature and formation of hot spots. The computed results of contact spots that are simulated using a coupled thermal-mechanical analysis present sinusoidal distortions and localized extrusions of the disk surface, which are strongly related to a hot spot in the practical disk brake.

Numerical Study of Miro-Contact Surface Induced Hot Spots in Friction Brakes (마찰식 브레이크의 미세 접촉면에 발생된 적열점 현상의 수치적 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.268-273
    • /
    • 2003
  • This paper presents hot spot behaviors on the rubbing surface of disk-pad type brake by using coupled thermal-mechanical analysis technique. The height of micro-asperity on the rubbing surface is usually 2∼3 ${\mu}$m in practical disk brakes. Non-uniform micro-contacts between the disk and the rigid friction pads lead to high local temperature distributions, which may cause the material degradation, and develop hot spots, thermal cracks, and brake system failure at the end for a braking period. The friction temperatures on the rubbing surface of disk brakes in which are strongly related to the hot spot and thermal related wears are rapidly concentrated on the micro-contact asperities during braking. The computed FEM results show that the contact stress, friction induced temperature and thermal strain are highly concentrated on the rubbing micro-contact asperities even though the braking speed and force are small during the braking period. This hot spot may directly produce the slippage and various thermal wears on the brake-rubbing surface.

Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments (단조 금형의 윤활, 표면처리 및 금형 수명 평가)

  • 김병민
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Development of a 3D Shape Reconstruction System for Defects on a Hot Steel Surface (고온 금속 표면 결함에 대한 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.459-464
    • /
    • 2015
  • An on-line quality control of hot steel products is one of the important issues in the steel industry because of cost minimization. In recent years, relative depth information of surface defects is increasingly required for strict quality control. In this paper, a 3D shape reconstruction scheme for defects on a hot steel surface based on a multi-spectral photometric stereo method is proposed. After simultaneously illuminating a hot steel surface by using vertical/horizontal linearly polarized lights of green and blue light sources, the corresponding 4 images are obtained. The photometric stereo method is then applied with the aid of a GPU (Graphic Processing Unit) to reconstruct the shape of the target surface based on these images. The proposed scheme was validated through experiments.

A Study on New LDD Structure for Improvements of Hot Carrier Reliability (핫 캐리어 신뢰성 개선을 위한 새로운 LDD 구조에 대한 연구)

  • 서용진;김상용;이우선;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The hot carried degradation in a metal oxide semiconductor device has been one of the most serious concerns for MOS-ULSI. In this paper, three types of LDD(lightly doped drain) structure for suppression of hot carried degradation, such as decreasing of performance due to spacer-induced degradation and increase of series resistance will be investigated. in this study, LDD-nMOSFETs used had three different drain structure, (1) conventional surface type LDD(SL), (2) Buried type LDD(BL), (3) Surface implantation type LDD(SI). As experimental results, the surface implantation the LDD structure showed that improved hot carrier lifetime to comparison with conventional surface and buried type LDD structures.

Effect of Lubrication during Hot Rolling on the Evolution of Textures at the surface of 18%Cr Ferritic Stainless Steel Sheet (페라이트계 스테인리스 강의 열간압연 시 표면 층의 집합조직 발달에 미치는 윤활의 영향)

  • Pyon, Y.B.;Kang, H.G.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.411-414
    • /
    • 2008
  • In order to study the effect of lubrication during hot rolling, ferritic stainless steel (FSS) sheet were hot-rolled with and without application of lubrication. The effect of two hot rolling processes on the evolution of texture and microstructure after hot rolling, cold rolling and subsequent recrystallization annealing was studied by means of macro-texture analysis and microstructure observations. After hot rolling, the specimen rolled with lubrication showed rolling textures at the sheet surface, while the specimen rolled without lubrication displayed shear textures in the outer layers of the sheet. Hot rolling with lubrication was beneficial to the formation of strong recrystallization textures at sheet surface. However, hot rolling with lubrication led to the formation of orientation colonies in outer thickness layers of the recrystallized sheet.

  • PDF