• Title/Summary/Keyword: Hot pressing method

Search Result 127, Processing Time 0.025 seconds

Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method (전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작)

  • Shin, Hocheol;Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient

  • Omerasevic, Mia;Lukic, Miodrag;Savic-Bisercic, Marjetka;Savic, Andrija;Matovic, Ljiljana;Bascarevic, Zvezdana;Bucevac, Dusan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.115-122
    • /
    • 2020
  • A promising method for removal of Cs ions from water and their incorporation into stable crystal structure ready for safe and permanent disposal was described. Cs-exchanged X zeolite was hot-pressed at temperature ranging from 800 to 950 ℃ to fabricate dense pollucite ceramics. It was found that the application of external pressure reduced the pollucite formation temperature. The effect of sintering temperature on density, phase composition and mechanical properties was investigated. The highest density of 92.5 %TD and the highest compressive strength of 79 MPa were measured in pollucite hot-pressed at 950 ℃ for 3 h. Heterogeneity of samples obtained at 950 ℃ was determined using scanning electron microscopy. The pollucite hot-pressed at 950 ℃ had low linear thermal expansion coefficient of ~4.67 × 10-6 K-1 in the temperature range from 100 to 1000 ℃.

4 Inch Wafer-Scale Replicability Enhancement in Hot Embossing by using PDMS-Cushioned Si Mold (PDMS 쿠션을 갖는 Si 몰드에 의한 핫엠보싱 공정에서의 4 인치 웨이퍼 스케일 전사성 향상)

  • Kim Heung-Kyu;Ko Young-Bae;Kang Jeong-Jin;Heo Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.178-184
    • /
    • 2006
  • Hot embossing is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, PDMS pad was used as a cushion on the backside of the micro-patterned 4 inch Si mold to improve the pattern fidelity over the 4 inch PMMA sheet by increasing the conformal contact between the Si mold and the PMMA sheet. The pattern replicability improvement over 4 inch wafer scale was evaluated by comparing the replicated pattern height and depth for PDMS-cushioned Si mold against the rigid Si mold without PDMS cushion.

Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering) (고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결)

  • 김지헌;최상욱;조원승;조동수;오장환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

A Study on the Micro-mechanical Characteristics of Vacuum Hot Pressed Titanium Metal Matrix Composites (고온진공가압 티타늄 금속기 복합재료의 미시-기계적 특성에 관한 연구)

  • 하태준;김태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.207-210
    • /
    • 2003
  • Vacuum hot pressing has been used for the development of Ti-MMCs using foil-fiber-foil method, and subsequent micro-mechanical characteristics of the composites are evaluated by means of several experimental processes. As shown by the results, fiber strength degradation occurs during the consolidation, and particularly residual stresses results from the thermal expansion mismatch between fiber and matrix materials during cooling process are incorporated in the changes of mechanical properties of the composites. In industrial applications, the processing conditions avoiding micro-material failures are important together with the properties of finished products, and therefore should be included in the assesment of the material characterization.

  • PDF

Interface System Construction for PWR Spent Fuel Rod Cutting and Pellet Pressing Device (PWR 핵연료 봉 커팅 및 펠렛 압출장치에 대한 연계 시스템 구축)

  • 정재후;윤지섭;흥동희;김영환;진재현;박기용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • The authors have developed two devices which cuts the spend fuel rod to an optimal size and extracts fuel pellet from the pieces of cut fuel rods. These devices are so important to reduce radioactive wastes that some advanced countries developed their own methods and devices. The authors have benchmarked from these methods and devices. For spent fuel rod cutting, the tube cutting method has been chosen. some mechanical properties of the fuel tube and pellet has been carefully considered for an optimal cutting size. For fuel pellet extraction, a mechanically extracting method has been adopted. The existing chemical method have turned out to be inappropriate because it produced large amount of radioactive wastes, in spite of its high fuel recovery characteristics. The developed method has an advantage that it can be applied to other fuel rods that have different shapes and sizes. The two devices are set up and operated in the hot cell where people can not go in, so that the devices have been designed to be controlled remotely and modulated for easy maintenance. And the performance of the devices has been tested by using simulated fuel rod. From the experimental results, the devices are supposed to be useful for reducing radioactive wastes.

  • PDF

Thermoelectric Properties of the Hot-Pressed n-Type PbTe with the Powder Processing Method (분말 제조공정에 따른 n형 PbTe 가압소결체의 열전특성)

  • Choi, Jae-Shik;Oh, Tae-Sung;Hyun, Dow-Bin
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.245-251
    • /
    • 1998
  • Bi-doped n-type PbTe thermoeletric materials were fabricated by mechanical alloying and hot pressing. The intering characteristics and thermoelectric properties of the hot- pressed PbTe were characterized and compared with the properties of the specimens prepared by meltingigrinding method. The hot-pressed PbTe specimens fabricated by mechanical alloying exhibited more negative Seebeck coefficient, higher electrical resistivity and lower thermal conductivity. compared to ones prepared by meltingigrinding. The maximum figure-of-merit increased and the temperature for the maximum figure-of-merit shifted to lower temperature for the specimens fabricated by mechanical alloying. When hot pressed at $650^{\circ}C$, 0.3 wt% Bi-doped PbTe fabricated by mechanical alloying and meltingjgrinding exhibited maximum figure-of-merits of $1.33\times10^{-3}/K$ at $200^{\circ}C$ and $1.07\times10^{-3}/K$ at $400^{\circ}C$ respectively.

  • PDF

Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-Bulk Hot-Pressed with Addition of $ZrO_2$ as Nano Inclusions ($ZrO_2$를 나노개재물로 첨가한 p형 $(Bi,Sb)_2Te_3$ 나노벌크 가압소결체의 열전특성)

  • Yeo, Y.H.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • Thermoelectric properties of the p-type $(Bi,Sb)_2Te_3$, hot-pressed with the $(Bi,Sb)_2Te_3$ powders fabricated by melting/grinding method, were characterized with variation of the hot-pressing conditions. Thermoelectric characteristics of the hot-pressed $(Bi,Sb)_2Te_3$ were also analyzed with addition of $ZrO_2$ as nano inclusions. With increasing the hotpressing temperature from $350^{\circ}C$ to $550^{\circ}C$, Seebeck coefficient and electrical resistivity decreased from 275 ${\mu}V$/K to 230 ${\mu}V$/K and 6.68 $m{\Omega}$-cm to 1.86 $m{\Omega}$-cm, respectively. The power factor decreased with addition of $ZrO_2$ nano powders more than 1 vol%, implying that the optimum amount of $ZrO_2$ nano inclusions to get a maximum power factor would be less than 1 vol%.

Thermoelectric Properties of the n-type Bi2(Te0.9Se0.1)3 Processed by Hot Pressing with Dispersion of 0.5 vol% TiO2 Nanopowders (0.5 vol% TiO2 나노분말을 분산시킨 n형 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성)

  • Park, D.H.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ powders, which were fabricated by melting/grinding method and dispersed with 0.5 vol% $TiO_2$ nanopowders, were hot-pressed in order to investigate the effects of $TiO_2$ dispersion on the thermoelectric properties of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. Excellent thermoelectric properties such as a maximum figure-of-merit of $2.93{\times}10^{-3}/K$ and a maximum dimensionless figure-of-merit of 1.02 were obtained for the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. With dispersion of 0.5 vol% $TiO_2$ nanopowders, the maximum figure-of-merit and the maximum dimensionless figure-of-merit decreased to $2.09{\times}10^{-3}/K$ and 0.68, respectively.

High Heat Flux Test of Cu/SS Mock-up for ITER First Wall (ITER 일차벽의 Cu/SS Mock-up에 대한 고열부하 시험)

  • Lee, D.W.;Bae, Y.D.;Hong, B.G.;Lee, J.H.;Park, J.Y.;Jeong, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.325-330
    • /
    • 2006
  • In order to verify the integrity of the first wall (FW) of the International Thermonuclear Experimental Reactor (ITER), the fabricated Cu/SS mock-up is tested in the JAEA Electron Beam Irradiation Test Stand (JEBIS). To fabricate the Cu/SS mock-up, CuCrZr and 316L authentic stainless steel (SS316L) are used for Cu alloy and steel, respectively The hot isostatic pressing (HIP) is used as a manufacturing method with a $1050^{\circ}C$ and 150 MPa. The high heat flux (HHF) test is performed using an electron beam with a heat flux of $5MW/m^2$ and a cycle of 15-sec on time and 30-sec off time. The temperature measurement in the HHF test shows good agreement with the results obtained from ANSYS code analysis, which is used for determining the HHF test conditions.