• 제목/요약/키워드: Hot plate

Search Result 690, Processing Time 0.028 seconds

Effects of Ga Composition Ratio and Annealing Temperature on the Electrical Characteristics of Solution-processed IGZO Thin-film Transistors

  • Lee, Dong-Hee;Park, Sung-Min;Kim, Dae-Kuk;Lim, Yoo-Sung;Yi, Moonsuk
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2014
  • Bottom gate thin-film transistors were fabricated using solution processed IGZO channel layers with various gallium composition ratios that were annealed on a hot plate. Increasing the gallium ratio from 0.1 to 0.6 induced a threshold voltage shift in the electrical characteristics, whereas the molar ratio of In:Zn was fixed to 1:1. Among the devices, the IGZO-TFTs with gallium ratios of 0.4 and 0.5 exhibited suitable switching characteristics with low off-current and low SS values. The IGZO-TFTs prepared from IGZO films with a gallium ratio of 0.4 showed a mobility, on/off current ratio, threshold voltage, and subthreshold swing value of $0.1135cm^2/V{\cdot}s$, ${\sim}10^6$, 0.8 V, and 0.69 V/dec, respectively. IGZO-TFTs annealed at $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$ were also fabricated. Annealing at lower temperatures induced a positive shift in the threshold voltage and produced inferior electrical properties.

A Hight Tilted OCB(HTOCB) Mode using Control of Tilt Angle for Hematic Liquid Crystal on Polyimide Surface (폴리이미드 표면에서의 네마틱 액정의 틸트 제어를 이용한 High Tilted OCB(HTOCB) 모드)

  • Hwang, Jeoung-Yeon;Jeong, Youn-Hak;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.635-640
    • /
    • 2005
  • In this paper, we have improved a novel high tilted optically compensated bend (OCB) (HTOCB) mode by using high tilt angle that was generated by the unique baking condition on the homeotropic alignment layer. The high tilt angle of liquid crystal (LC) was generated by new alignment process that tilt angle changed homeotropic state to homeogenous state using Hot-plate equipment; we obtained about $40\~50^{\circ}$ tilt angle with negative and positive dielectric anisotropy on the homeotropic polyimide (PI), and then LC tilt angle decreased as increasing baking temperature and time. At last, we obtained about $10^{\circ}$ with positive type NLC $({\Delta}n>0)$. Also, the LC tilt angle of positive type NLC $({\Delta}n>0)$ decreased as increasing rubbing strength at the same baking temperature and time. The novel LC operating mode (HTOCB) that used the high tilt angle by the new alignment method was improved. The response time of the novel HTOCB cell was faster than that of conventional OCB cell. We suggest that the developed the novel HTOCB cell using control of tilt angle on the homeotropic surface is a promising technique for the achievement of a fast response time and a high contrast ratio.

Preparation and structural properties of the Pb(Zr, Ti)${O}_{3}$ thin film by Sol-Gel method (Sol-Gel 법에 의한 Pb(Zr, Ti)${O}_{3}$ 박막의 제조 및 구조적 특성)

  • 이영준;정장호;이성갑;이영희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.7
    • /
    • pp.914-918
    • /
    • 1995
  • In this study, Pb(Zr$_{x}$ Ti$_{1-x}$ )O$_{3}$ (x=0.65, 0.52, 0.35) thin films were fabricated by Sol-Gel method. A stock solution with excess Pb 10[mol%] of Pb(Zr$_{x}$ Ti$_{1-x}$ )O$_{3}$ was made and spin-coated on the Pt/SiO$_{2}$/Si substrate at 4000[rpm] for 30[sec.]. Coated specimens were dried on the hot-plate at 400[.deg. C] for 10[min.]. Sintering temperature and time were 500~800[.deg. C] and 1~60[min.]. The coating process was repeated 6 times and the final thickness of the thin films were about 4800[A]. To investigate crystallization condition, PZT thin films were analyzed with sintering temperature, time and composition by the XRD. The microstructure of thin fulms were investigated by SEM. The ferroelectric perovskite phases precipitated under the sintering of 700[.deg. C] for 1 hours. In the PZT(52/48) composition, dielectric constant and dielectric loss were 2133, 2.2[%] at room temperature, respectively.ively.

  • PDF

Improvement of Mechanical Properties of IPMC through Developing a Degree of Dispersion of SWCNT/Nafion Composite (SWCNT/Nafion 복합체의 분산능 향상을 통한 IPMC의 기계적 특성 향상)

  • Kwon, Hui-June;Kim, Ha-Na;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.131-136
    • /
    • 2011
  • Many researchers are recently studying about Electroactive polymer(EAP). But it has a physical limitation, because of property of material. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. This study focuses on the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. To come up with mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we dispersed Single-walled carbon nanotubes(SWCNTs). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. We fabricated a disperse SWCNT/Nafion composite uniformly. Through the use of the E-beam evaporator to form an uniform electrode layer, we consummated the IPMC actuator. This result shows improving 1.5 times mechanical properties about driving force in IPMC.

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.

Anti-nociceptive Properties of Ribes fasciculatum

  • Kim, Jin Kyu;Im, Jun Sang;Kim, Bong Seok;Cha, Dong Seok;Kwon, Jin;Oh, Chan Ho;Ma, Sang Yong;Yu, Ju Hee;Nam, Jung Il;Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.311-315
    • /
    • 2013
  • Ribes fasciculatum (Saxifragaceae) has been widely used as a traditional medicine for the treatment of cough, antidote, cold, lacquer poison, and sore throat. In the present study, we evaluated the anti-nociceptive effects of ethyl acetate fraction of Ribes fasciculatum (ERF) in mice. Test results of tail-immersion test and hot plate test revealed that the ERF had strong anti-nociceptive activities on thermal nociception in a dose dependent manner, indicating ERF's anti-nociception on the central pain. Moreover, the acetic acid-induced chemical nociception was also significantly reduced by ERF treatment. This result shows that ERF may also work on the peripheral pain. We further performed formalin test to confirm ERF's anti-nociceptive properties and found that pain responses were significantly decreased by ERF treatment. Interestingly, in the combination test with naloxone, the analgesic activity of ERF was not changed, indicating that the opioid receptor was not involved in the ERF-mediated anti-nociception. These results indicate that ERF might be possibly used as a painkiller for the treatment of nociceptive pains.

Fabrication and Characterization of Cellulose Electro-Active Paper with Increased Thickness (두께를 증가시킨 셀룰로오스 Electro-Active Paper 의 제조와 특성평가)

  • Kim, Ki-Baek;Jung, Hyejun;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.241-246
    • /
    • 2013
  • This paper reports fabrication and characterization of cellulose Electro-Active Paper (EAPap) with increased thickness. Usual thickness of cellulose EAPap was $15{\mu}m$. This thickness needs to be increased to enhance the mechanical force output of EAPap. To fabricate thick cellulose EAPap, the fabrication process parameters including casting and drying processes should be investigated. In this paper, the casting thickness is increased from $800{\mu}m$ to $1500{\mu}m$, and heating times on a hot plate before and after curing process are introduced at 40 and $60^{\circ}C$ for 30 and 60 minutes, respectively. Thickness measurement, Thermal Gravitational Analysis (TGA), UV-transmittance, Young's modulus, and piezoelectric charge constant are measured. Heated EAPaps with increased thickness have similar TGA result, higher transmittance, higher Young's modulus and lower piezoelectric charge constant.

Detection of Tool Failure by Wavelet Transform (PDMS를 이용한 마이크로 구동기의 제작 및 평가)

  • Lee, Dong Weon;Park, Jong Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.72-77
    • /
    • 2008
  • In this study, we propose and develop PDMS-based modular actuators. The microactuator which looks like a small insect uses thermal expansion power of the PDMS (polydimethylsiloxane; $sylgar^{(R)}$ 184 silicone elastomer). The PDMS-based microactuator provides a large displacement due to a high thermal expansion coefficient (approximately 310ppm). The microacruator with 1mm length $350{\mu}m$ width is optimized by using a numerical analysis. The shape of the PDMS actuatoris variously designed. They are placed at several positions to find the optimal position that provides a high transformation ratio. The PDMS-based microactuators are fabricated using a conventional micromaching technique. The fabricated microactuator is heated using a hot-plate. The actuator displacement is measured as a function of temperature from $27^{\circ}C$ to $300^{\circ}C$. The experimental results are compared to the simulation result. When heating temperature up to $300^{\circ}C$ is applied to the PDMS actuator, each V-groove-shaped joint is actuated $30{\mu}$ mat $300^{\circ}C$. Anotherdesign of the microactuator has a maximum displacement of about 656mm.

  • PDF

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.

Anti-Rheumatoid Arthritis Effect of the Kochia scoparia Fruits and Activity Comparison of Momordin Ic, its Prosapogenin and Sapogenin

  • Choi, Jongwon;Lee, Kyung-Tae;Jung, Hyun-Ju;Park, Hee-Sun;Park, Hee-Juhn
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.336-342
    • /
    • 2002
  • MeOH extract of Kochia scoparia was fractionated into $CHCl_3-$, EtOAc- and BuOH extracts and the last fraction were hydrolyzed by 3%-NaOH ($MeOH-H_2O$) to compare the bioactivities on antinociceptive and anti-inflammatory effects. Silica gel column chromatography of BuOH fraction afforded a large amount of $3-Ο-{\beta}-D-xylopyranosyl {\;}(1{\rightarrow}3)-{\beta}-D-glucuronopyranosyl$ oleanolic acid (momordin Ic, 4) and that of acid hydrolysate of BuOH fraction gave $3-Ο-{\beta}-D-glucuronopyranosyl oleanolic$ acid (momordin Ib, 3), its 6'-Ο-methyl ester (2) and oleanolic acid (1). Silica gel column chromatography of alkaline hydrolysate afforded a large amount of 4. MeOH extract and both EtOAc- and BuOH fractions were active in the rheumatoidal rat induced Freund's complete adjuvant reagent (FCA) whereas $CHCl_3$ fraction was inactive. Compound 1 and 4 showed significant activities in the same assay but oleanolic acid 3-Ο-glucuronopyranoside (3) showed no activity. These fashions were also observed in carrageenan-induced edema of the rat and in the antinociceptive activity tests undertaken in hot plate- and writhing methods. These results suggest that momordin Ic and its aglycone, oleanolic acid, could be active principles for rheumatoid arthritis.