• 제목/요약/키워드: Hot Pressing (HP)

검색결과 15건 처리시간 0.023초

The Effect of La-silicon Oxynitride on the Densification of ${Si_3}{N_4}$ Ceramics by Spark Plasma Sintering

  • Cho, Kyeong-Sik;Kim, Sungjin;Beak, Sung-Ho;Park, Heon-Jin;Lee, June-Gunn
    • 한국세라믹학회지
    • /
    • 제38권8호
    • /
    • pp.687-692
    • /
    • 2001
  • Silicon nitride-La-silicon oxynitride ceramics were fabricated by Spark Plasma Sintering (SPS). The density, crystalline phase and microstructure were compared with those obtained by Hot Pressing (HP). The full density was achieved within 40 min by spark plasma sintering at 1$650^{\circ}C$, whereas the same result was required by hot pressing with a dwell time of 500 min at higher temperature. There were some differences in the microstructure and second phases in the sintered ceramics, which are attributed to the rapid densification in the spark plasma sintering. The fine and acicular grain microstructure appeared in spark plasma sintering.

  • PDF

수산화아파타이트와 지르코니아의 경사기능 재료의 제조 (Fabrication of functionally graded materials of hydroxyapatite and zirconia)

  • 김성진;조경식;박노진
    • 한국결정성장학회지
    • /
    • 제11권3호
    • /
    • pp.115-119
    • /
    • 2001
  • 수산화아피타이트와 이트리아 부분 안정화된 지르코니아의 바를 달리하는 3층 구조를 가즌ㄴ 생체 재료용 경사기능재료(FGMs)를 spark plasma sintering(SPS)과 hot pressing(HP) 장비로 제조하였다. HAp 원료에 대한 전처리를 실시할 경우 HAp의 소결성이 개선되었다. 전처리하여 얻은 FGM 복합체의 최고밀도는 전처리하지 않은 FGM 보다 낮은 온도에서 얻을 수 있었다. SPS로 FGM 소결체를 제조할 경우 10 MPa의 가압조건에서 8분 동안 소결 할 경우, $1200^{\circ}C$의 온도에서도 HAp의 TCP로의 분해 반응은 일어나지 않았으나. 이 온도에서 FGm의 지르코니아는 정방정에서 압방정으로와 상변화가 일어났다. 지르코니아 첨가에 따라. 즉 지르코니아의 응력 유기 상전이에 의해, HAp-ZrO$_2$ FGm 소결체의 기계적 물성이 증진된 것으로 예산된다. 치밀하고 고강도의 FGM을 제조하는 방법으로서 SPS가 HP공정에 비해 우수한 것으로 나타났다.

  • PDF

Densification Mechanism of NITE-SiC and $SiC_f/SiC$ Composites

  • 윤한기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.181-184
    • /
    • 2006
  • Nano Infiltration Transient Eutectic Phase - Silicon Carbide (NITE-SiC) and $SiC_f/SiC$ composite have been fabricated by a Hot Pressing (HP) process, using SiC powder with an average size of about 30nm. Alumina ($Al_2O_3$) and Yttria ($Y_2O_3$) were used for additives materials. These mixed powders were sintered at the temperature a of $1300^{\circ}C$, $1650^{\circ}C$, $1800^{\circ}C$ and $1900^{\circ}C$ under an applied pressure of 20MPa. And unidirection and two dimension woven structures of $SiC_f/SiC$ composites were prepared starting from Tyranno SA fiber. Densification of microstructure gives an effect to density. Specially, Densification Mechanism basically is important from the sintering which use the HP. In this study, the densification of NITE-SiC and $SiC_f/SiC$ composite mechanism by a press displacement appears investigated. The mechanism on the densification of each sintering temperature was investigated. The each step is shows a with each other different mechanism quality.

  • PDF

극저온 기계화학적 밀링(Mechano-Chemical Milling)에 의해 제조된 ODS Fe 합금의 기계적 특성 (Mechanical Properties of ODS Fe Alloys Produced by Mechano-Chemical Cryogenic Milling)

  • 한성인;홍영환;황승준
    • 열처리공학회지
    • /
    • 제25권3호
    • /
    • pp.138-145
    • /
    • 2012
  • An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.

알루미늄탄소나노튜브 복합재의 가공 방법과 탄소나노튜브 함량에 따른 트라이볼로지 특성 (Tribological Characteristics of Carbon Nanotube Aluminum Composites According to Fabrication Method and Content of Carbon Nanotube)

  • 이영제;이중희;김일영;이규선;백승현;윤정일;김영직
    • Tribology and Lubricants
    • /
    • 제24권5호
    • /
    • pp.269-274
    • /
    • 2008
  • Carbon nanotube composite is considered to be a good candidate material for composite material because of its excellent mechanical property and low density under high temperature as well as good wear and frictional properties. In this study, tribological characteristics of carbon nanotube aluminum composite were evaluated using pin-on-disk wear tester. Spark Plasma Sintering method is more effective than Hot Pressing method in terms of wear and friction. The composite with 1% CNT has the lowest friction and wear characteristic.

고온가압소결을 이용한 YSZ-TiC 세라믹스 복합체의 제조와 특성 (Fabrication and Characteristics of YSZ-TiC Ceramics Composite by Using Hot Pressing)

  • 최재형;최지영;김성원
    • 한국분말재료학회지
    • /
    • 제28권5호
    • /
    • pp.381-388
    • /
    • 2021
  • Zirconia has excellent mechanical properties, such as high fracture toughness, wear resistance, and flexural strength, which make it a candidate for application in bead mills as milling media as well as a variety of components. In addition, enhanced mechanical properties can be attained by adding oxide or non-oxide dispersing particles to zirconia ceramics. In this study, the densification and mechanical properties of YSZ-TiC ceramic composites with different TiC contents and sintering temperatures are investigated. YSZ - x vol.% TiC (x=10, 20, 30) system is selected as compositions of interest. The mixed powders are sintered using hot pressing (HP) at different temperatures of 1300, 1400, and 1500℃. The densification behavior and mechanical properties of sintered ceramics, such as hardness and fracture toughness, are examined.

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

Thermo-electrical properties of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Supriya, N.
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.25-35
    • /
    • 2017
  • The aim of the work was to investigate the thermo-electrical properties of low cost and rapidly produced randomly oriented carbon/carbon (C/C) composite. The composite body was fabricated by combining the high-pressure hot-pressing (HP) method with the low-pressure impregnation thermosetting carbonization (ITC) method. After the ITC method step selected samples were graphitized at $3000^{\circ}C$. Detailed characterization of the samples' physical properties and thermal properties, including thermal diffusivity, thermal conductivity, specific heat and coefficient of thermal expansion, was carried out. Additionally, direct current (DC) electrical conductivity in both the in-plane and through-plane directions was evaluated. The results indicated that after graphitization the specimens had excellent carbon purity (99.9 %) as compared to that after carbonization (98.1). The results further showed an increasing trend in thermal conductivity with temperature for the carbonized samples and a decreasing trend in thermal conductivity with temperature for graphitized samples. The influence of the thickness of the test specimen on the thermal conductivity was found to be negligible. Further, all of the specimens after graphitization displayed an enormous increase in electrical conductivity (from 190 to 565 and 595 to 1180 S/cm in the through-plane and in-plane directions, respectively).

복산화물에 의한 질화규소 세라믹스의 제조와 그 기계적 특성 (The Effects of $Y_3Al_5O_{12}$ on the Mechanical Properties of Silicon Nitride)

  • 노상훈;김부안;정해용;윤한기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.169-172
    • /
    • 2006
  • In the present work, silicon nitride was fabricated with $Y_3Al_5O_{12}$ as sintering additive and its mechanical properties were investigated. Silicon nitride with 3, 5, 7wt% of $Y_3Al_5O_{12}$ was prepared and sintered by a Hot Pressing (HP) technique at 1750, $1800^{\circ}C$ for 2 hours. The Process was fulfilled under different process pressures of 30, 45MPa respectively. Mechanical properties (density, strength, hardness, fracture toughness) were investigated as a function of $Y_3Al_5O_{12}$ contents in $Si_3N_4$. $Si_3N_4-Y_3Al_5O_{12}$ ceramics showed similar mechanical properties compared with $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics. But its high temperature strength was higher than $Si_3N_4-Y_2O_3-Al_2O_3$ceramics considerably.

  • PDF