Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.5.381

Fabrication and Characteristics of YSZ-TiC Ceramics Composite by Using Hot Pressing  

Choi, Jae-Hyung (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Choi, Ji-Young (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.28, no.5, 2021 , pp. 381-388 More about this Journal
Abstract
Zirconia has excellent mechanical properties, such as high fracture toughness, wear resistance, and flexural strength, which make it a candidate for application in bead mills as milling media as well as a variety of components. In addition, enhanced mechanical properties can be attained by adding oxide or non-oxide dispersing particles to zirconia ceramics. In this study, the densification and mechanical properties of YSZ-TiC ceramic composites with different TiC contents and sintering temperatures are investigated. YSZ - x vol.% TiC (x=10, 20, 30) system is selected as compositions of interest. The mixed powders are sintered using hot pressing (HP) at different temperatures of 1300, 1400, and 1500℃. The densification behavior and mechanical properties of sintered ceramics, such as hardness and fracture toughness, are examined.
Keywords
Yttria-stabilized zirconia (YSZ); YSZ-TiC ceramics composite; TiC Addition; Hardness; Fracture toughness;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 F. Riley: Structural Ceramics, Cambridge University Press, Cambridge (2009) 313.
2 R. J. J. Hannink, P. M. Kelly and B. C. Muddle: J. Am. Ceram. Soc., 83 (2000) 461.   DOI
3 J.-H. Jung and S.-J. Lee: J. Korean Powder Metall. Inst., 24 (2017) 146.
4 O. Vasylkiv, Y. Sakka and V. V. Skorokhod: Mater. Trans., 44 (2003) 2235.   DOI
5 M. Grigoriev, N. Kotelnikov, S. Buyakova and S Kulkov: Mater. Sci. Eng., 116 (2016) 012002.
6 H. S. Kim: Mater. Sci. Eng., A289 (2000) 30.   DOI
7 M. W. Barsoum: Fundamentals of Ceramics, Taylor & Francis Group, New York (2003) 383.
8 B. Basu and K. Balani: Advanced Structural Ceramics, John Wiley & Sons, Inc., New Jersey (2009) 175.
9 J. R. Kelly and I. Denry: Dent. Mater., 24 (2008) 289.   DOI
10 C. Park, Y. Yang, S. Kim, S. Lee, H. Kim, D. Lim, B. Jang and Y. Oh: J. Korean Powder Metall. Inst., 20 (2013) 460.   DOI
11 B. J. Song, K. R. Kim and H. S. Kim: J. Korean Powder Metall. Inst., 20 (2013) 425.   DOI
12 Y.-I. Lee and Y.-H. Choa: J. Korean Powder Metall. Inst., 21 (2014) 222.   DOI
13 D. Jiang, O. Van Der Biest and J. Vleugels: J. Eur. Ceram. Soc., 27 (2007) 1247.   DOI
14 M. N. Rahaman: Ceramic Processing and Sintering, Marcel Dekker, Inc., New York (1995) 429.
15 B. Basu, J. Vleugels and O. Van Der Biest: J. Euro. Ceram. Soc., 25 (2005) 3629.   DOI
16 L. E. Toth: Transition Metal Carbides and Nitrides, Academic Press, Inc., London, (1971) 6.
17 W.-J. Lee, C.-S. Kwon, S. Kim, Y.-S. Oh, H.-T. Kim and D.-S. Lim: J. Korean Powder Metall. Inst., 20 (2013) 445.   DOI
18 N. Q. Minh and T. Takahashi: Science and Technology of Ceramic Fuel Cells, Elsevier Science B.V., Netherland (1995) 69.
19 B. Basu, J. Vleugels and O. Van Der Biest: J. Alloys Compo., 372 (2004) 278.   DOI
20 C. N. Elias, H. E. S. dos Santos, M. Garbossa, C. dos Santos and J. R. Kelly: J. Ceram. Sci. Technol., 08 (2017) 525.