• 제목/요약/키워드: Host-pathogen interaction

검색결과 70건 처리시간 0.028초

Pathophysiology of enteropathogenic Escherichia coli during a host infection

  • Lee, Jun Bong;Kim, Se Kye;Yoon, Jang Won
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.28.1-28.18
    • /
    • 2022
  • Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.

대장균에서 발현된 한탄바이러스 뉴클레오캡시드 단백질의 분리 정제 (Isolation and Purification of Hantaan Viral Nucleocapsid Protein Expressed in Escherichia coli)

  • 노갑수;김종완;하석훈;정근택;문상범;최차용
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.656-661
    • /
    • 1998
  • Hantaan virus belonging to the genus Hantavirus and family Bunyaviridae causes an acute severe illness of human, Haemorrhagic Fever with Renal Syndrome (HFRS). It is a rodent host-borne pathogen and distributed in Asia and Eastern Europe. Hantaviruses have three major antigens, i.e., G1, G2 glycoproteins and nucleocapsid protein (N). Among them, nucleocapsid protein was reported to be the most invaluable antigen as for diagnosis. We have cloned and expressed Hantaan viral nucleocapsid gene in E. coli BL21(DE3). In this study, we have tried to purify the nucleocapsid protein produced by recombinant E. coli, and could attained a purity of >90% by anti-N monoclonal antibody-coupled immunoaffinity chromatography or phenyl sepharose hydrophobic interaction chromatography.

  • PDF

벼도열병균의 비병원성 유전자 AVR-Pita1 (Avirulence Gene AVR-Pita1 in the Rice Blast Fungus)

  • 박숙영
    • 식물병연구
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2019
  • 벼도열병균은 벼를 재배하는 모든 지역에서 경제적으로 매우 중요한 병이다. 또한, 벼도열병균은 기주인 벼와 유전자 대유전자설이 적용되는 대표적인 식물병원균 모델이다. 재배지에 도입된 새로운 저항성 벼 품종의 빠른 저항성 상실은 병원균 집단의 레이스 변이가 주요 메커니즘으로 제안되고 있다. 이러한 새로운 레이스 변이는 저항성 유전자에 대항하는 비병원성 유전자의 변이에 의해 나타날 수 있는데, (i) 점돌연변이, (ii) 전이인자(transposon)의 삽입, (iii) frame shift등이 그 대표적인 예라고 할 수 있다. 비병원성 유전자 AVR-Pita1은 이러한 다양한 변이의 원인들이 모두 보고된 대표적인 비병원성 유전자이다. 이 총설에서는 비병원성 유전자 AVR-Pita1에 관한 다양한 정보를 제시하고, 상동성 유전자들인 AVR-Pita2 및 AVR-Pita3 유전자를 정리하였다. 이와 함께, 변이의 원인이 되는 다양한 예제를 리뷰 하였다.

Effects of Various Field Coccidiosis Control Programs on Host Innate and Adaptive Immunity in Commercial Broiler Chickens

  • Lee, Kyung-Woo;Lillehoj, Hyun S.;Jang, Seung-I.;Lee, Sung-Hyen
    • 한국가금학회지
    • /
    • 제39권1호
    • /
    • pp.17-25
    • /
    • 2012
  • Coccidiosis control programs such as vaccines or in-feed anticoccidials are commonly practiced in the poultry industry to improve growth performance and health of commercial broiler chickens. In this study, we assessed the effects of various coccidiosis control programs (e.g., in ovo vaccination, synthetic chemicals, and antibiotic ionophores) on immune status of broiler chickens vaccinated against infectious bronchitis virus and Newcastle disease virus (ND) and raised on an Eimeria-contaminated used litter. In general, the levels of ${\alpha}$-1-acid glycoprotein, an acute phase protein, were altered by the treatments when measured at 34 days of age. Splenocyte subpopulations and serum antibody titers against ND were altered by various coccidiosis control programs. In-ovo-vaccinated chickens exhibited highest mitogenic response when their spleen cells were stimulated with concanavalin A (Con A) at 7 days of age. It is clear from this study that the type of coccidiosis control program influenced various aspects of innate and adaptive immune parameters of broiler chickens. Further studies will be necessary to delineate the underlying relationship between the type of coccidiosis control program and host immune system and to understand the role of other external environmental factors such as gut microbiota on host-pathogen interaction in various disease control programs.

Pseudomonas syringae pv. tabaci 에서 식물세포접촉에 의한 병원성 유전자의 조절 (Plant Cell Contact-Dependent Virulence Regulation of hrp Genes in Pseudomonas syringae pv. tabaci 11528)

  • 이준승;차지영;백형석
    • 생명과학회지
    • /
    • 제21권2호
    • /
    • pp.227-234
    • /
    • 2011
  • Pseudomonas syringae pv. tabaci는 숙주인 담배에 감염하여 들불병(wild fire)을 일으키는 식물 병원성 세균이다. 이 세균의 pathogenicity island (PAI)는 Type III secretion system 및 병원성 유전자들을 암호화하고 있으며, 병원성 조절에 있어 핵심적인 역할을 한다. 최근 식물 병원성 세균인 Ralstonia solanacearum에서 식물 세포 접촉을 매개로 하여 hrp gene cluster를 양성조절하는 PrhA (plant regulator of hrp) receptor가 발견되었다. 본 연구에서는 P. syringae에서 식물세포에 의해 hrp 유전자가 유도되는지 확인하기 위해, prhA 유사체를 동정하고 PrhA 결실돌연변이주(BL11)를 구축하였다. BL11은 숙주 감염 실험에서 병원성이 현저히 감소하였고, 식물 세포현탁액에서 hrpA 유전자의 발현수준이 hrp 유도배지에서 보다 3배 더 높게 나타났다. 이러한 결과들을 근거로 PrhA가 식물세포접촉에 의한 조절에 중요한 역할을 한다는 것을 확인하였으며, hrpA-gfp reporter fusion을 사용하여 이를 다시 검증하였다.

EST기법을 이용한 고추와 고추역병균간의 상호작용에서 발현되는 유전자들의 분석 (Analysis of Genes Expressed during Pepper-Phytophthora capsici Interaction using EST Technology)

  • 김동영;이종환;최우봉
    • 생명과학회지
    • /
    • 제24권11호
    • /
    • pp.1187-1192
    • /
    • 2014
  • 고추는 한국, 중국, 멕시코를 포함한 온대 및 아열대 지역을 중심으로 전세계적으로 전형적인 향신료로 식용되고 있으며 그 생산량 및 사용량은 해마다 증가하는 추세에 있다. 고추역병균인 Phytophthora capsici는 고추의 생산에 있어, 질적, 양적으로 많은 피해를 야기하는 식물병원균으로 알려져 있다. 난균강에 속하는 이 병원균은 기주식물의 뿌리, 줄기, 잎과 함께 과실에 이르기까지 식물체 전체를 가해한다. 고추역병의 발병을 분자수중에서 이해하기 위해서는, 발병과정에서 발현되는 유전자에 대한 연구분석이 필수적이며, 이를 위해 최근 개발되어 응용되고 있는 발현서열표지(expressed sequence tags, ESTs)의 분석을 시도하였다. 고추역병균을 접종한후 3일째 발병초기의 고추잎으로부터 추출한 total RNA를 이용하여 고추-고추역병균 발병초기 cDNA library를 구축하였다. 이 cDNA library에서 무작위로 선발된 5,760 clone에 대하여 말단 염기서열 분석을 수행하여 5,148개의 양질의 염기서열을 확보하고 contig assembly에 적용한 결과, 2,990개의 unigenes을 확보하였다. 이들 2,990개의 unigenes에 대한 BLASTX를 이용한 상동성 분석결과, 2,409개가 기존에 알려진 서열과 matching을 보였으며, 이중 606개가 기능적으로 구분되었다.

A Pattern Recognition Receptor, SIGN-R1, Mediates ROS Generation against Polysaccharide Dextran, Resulting in Increase of Peroxiredoxin-1 and Its Interaction to SIGN-R1

  • Choi, Heong-Jwa;Choi, Woo-Sung;Park, Jin-Yeon;Kang, Kyeong-Hyeon;Prabagar, Miglena G.;Shin, Chan-Young;Kang, Young-Sun
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.271-279
    • /
    • 2010
  • Streptococcus pneumoniae is the major pathogen that frequently causes serious infections in children, the elderly and immunocompromised patients. S. pneumoniae is known to produce reactive oxygen species (ROS) and S. pneumoniae-produced ROS is considered to play a role in pneumococci pathogenesis. SIGN-R1 is the principal receptor of capsular polysaccharides (CPSs) of S. pneumoniae. However, there is a considerable lack of knowledge about the protective role of SIGN-R1 against S. pneumoniae-produced ROS in SIGN-$R1^+$ macrophages. While investigating the protective role of SIGN-R1 against ROS, we found that SIGN-R1 intimately bound to peroxiredoxin-1 (Prx-1), one of small antioxidant proteins in vitro and in vivo. This interaction was increased with ROS generation which was produced by stimulating SIGN-R1 with dextran, a polysaccharide ligand of SIGN-R1. Also, SIGN-R1 crosslinking with 22D1 anti-SIGN-R1 antibody increased Prx-1 in vitro or in vivo. These results suggested that SIGN-R1 stimulation with CPSs of S. pneumoniae increase the expression level of Prx-1 through ROS and its subsequent interaction to SIGN-R1, providing an important antioxidant role for the host protection against S. pneumoniae.

Macromolecular Docking Simulation to Identify Binding Site of FGB1 for Antifungal Compounds

  • Soundararajan, Prabhakaran;Sakkiah, Sugunadevi;Sivanesan, Iyyakkannu;Lee, Keun-Woo;Jeong, Byoung-Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3675-3681
    • /
    • 2011
  • Fusarium oxysporum, an important pathogen that mainly causes vascular or fusarium wilt disease which leads to economic loss. Disruption of gene encoding a heterotrimeric G-protein-${\beta}$-subunit (FGB1), led to decreased intracellular cAMP levels, reduced pathogenicity, colony morphology, and germination. The plant defense protein, Nicotiana alata defensin (NaD1) displays potent antifungal activity against a variety of agronomically important filamentous fungi. In this paper, we performed a molecular modeling and docking studies to find vital amino acids which can interact with various antifungal compounds using Discovery Studio v2.5 and GRAMMX, respectively. The docking results from FGB1-NaD1 and FGB1-antifungal complexes, revealed the vital amino acids such as His64, Trp65, Ser194, Leu195, Gln237, Phe238, Val324 and Asn326, and suggested that the anidulafungin is a the good antifungal compound.The predicted interaction can greatly assist in understanding structural insights for studying the pathogen and host-component interactions.

과수화상병 저항성 사과대목의 MR5보유 대목별 비교 (Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance)

  • 권영희;최원일;김희규;김경옥;김주형
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

Inhibition of caspase-1-dependent apoptosis suppresses peste des petits ruminants virus replication

  • Lingxia Li;Shengqing Li;Shengyi Han;Pengfei Li;Guoyu Du;Jinyan Wu;Xiaoan Cao;Youjun Shang
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.55.1-55.12
    • /
    • 2023
  • Background: Peste des petits ruminants (PPR), caused by the PPR virus (PPRV), is an acute and fatal contagious disease that mainly infects goats, sheep, and other artiodactyls. Peripheral blood mononuclear cells (PBMCs) are considered the primary innate immune cells. Objectives: PBMCs derived from goats were infected with PPRV and analyzed to detect the relationship between PPRV replication and apoptosis or the inflammatory response. Methods: Quantitative real-time polymerase chain reaction was used to identify PPRV replication and cytokines expression. Flow cytometry was conducted to detect apoptosis and the differentiation of CD4+ and CD8+ T cells after PPRV infection. Results: PPRV stimulated the differentiation of CD4+ and CD8+ T cells. In addition, PPRV induced apoptosis in goat PBMCs. Furthermore, apoptosis and the inflammatory response induced by PPRV could be suppressed by Z-VAD-FMK and Z-YVAD-FMK, respectively. Moreover, the virus titer of PPRV was attenuated by inhibiting caspase-1-dependent apoptosis and inflammation. Conclusions: This study showed that apoptosis and the inflammatory response play an essential role in PPR viral replication in vitro, providing a new mechanism related to the cell host response.