• Title/Summary/Keyword: Host rock type

Search Result 33, Processing Time 0.023 seconds

Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics (국내 심부 지질특성 연구를 통한 고준위방사성폐기물 심층처분 후보 암종 선행연구)

  • Dae-Sung Cheon;Kwangmin Jin;Joong Ho Synn;You Hong Kihm;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.28-53
    • /
    • 2024
  • In general, high-level radioactive waste (HLW) generated as a result of nuclear power generation should be disposed within the country. Determination of the disposal site and host rock for HLW deep geological repository is an important issue not only scientifically but also politically, economically, and socially. Considered host rock types worldwide for geological disposal include crystalline rocks, sedimentary rocks, volcanic rocks, and salt dome. However, South Korea consists of various rock types except salt dome. This paper not only analyzed the geological and rock mechanical characteristics on a nationwide scale with the preliminary results on various rock type studies for the disposal host rock, but also reviewed the characteristics and possibility of various rock types as a host rock through deep drilling surveys. Based on the nationwide screening for host rock types resulted from literature review, rock distributions, and detailed case studies, Jurassic granites and Cretaceous sedimentary rocks (Jinju and Jindong formations) were derived as a possible candidate host rock types for the geological disposal. However, since the analyzed data for candidate rock types from this study is not enough, it is suggested that the disposal rock type should be carefully determined from additional and detailed analysis on disposal depth, regional characteristics, multidisciplinary investigations, etc.

Geological Review on the Distribution and Source of Uraniferous Grounwater in South Korea (국내 고함량 우라늄 지하수의 분포와 기원에 관한 지질학적 고찰)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.593-603
    • /
    • 2018
  • The most of groundwater with high U-concentration occur in the Jurassic granite of Gyeonggi massif and Ogcheon belt, and some of them occur in the Cretaceous granite of Ogcheon belt. On the contrary, they do not occur in the Jurassic granite of Yeongnam massif and the Cretaceou granite of Gyeongsang basin. The Jurassic and Cretacous granite, the host rock of high U-groundwater, were resulted from parental magma with high ratio of crustal material and highly differentiated product of fractional crystalization. These petrogenetic characteristics explain the geological evidence for preferential distribution of uraniferous groundwater in each host rock. It were reported recently that high U-content, low Th/U ratio and soluble mineral occurrence of uraninite in the two-mica granite of Daejeon area which have characteristics of S-type peraluminous and highly differntiated product. It is the mineralogical-geochemical evidences supporting the fact that the two-mica granite is the effective source of uranium in groundwater. The biotite granite and two-mica granite of Jurassic age were reported as biotite granite in many geological map even though two-mica granite occur locally. This fact suggest that the influence of two-mica granite can not be ignored in uraniferous groundwater hosted by biotite granite.

Deterioration Diagnosis and Evaluation of Physical Properties in the Dinosaur Footprint Fossils in Cheongsong Sinseongri, Korea, for the Conservation Plans (보존방안 수립을 위한 청송 신성리 공룡발자국 화석지의 손상도 진단 및 물성평가)

  • Yang, Hye Ri;Lee, Chan Hee;Park, Jun Hyoung
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.311-330
    • /
    • 2021
  • The Sinseongri site contains at least eleven theropod trackways, three sauropod trackways, and one or more ornithopod walkways of dinosaur footprints. The host rock at the site is primarily siltstone and mudstone, but thermal alterations have metamorphosed it into hornfels. Except for micro cracks and exfoliations, joint systems in various directions appeared on the surface of the fossils site and showed a low share of all damage factors. The host rocks in the fossils site demonstrated relatively high physical properties as a result of ultrasonic velocity and were classified as stable. More than half of the fossils required reinforcement to control the progression of cracks if the type of conservation treatment was subdivided according to the damage type of dinosaur footprint fossils. The white paint used to visualize the footprints seems to deteriorate, allowing rock debris to spill out and causing damage to the fossil site, and alternative visualization schemes should be considered.

음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향

  • 정찬호;이병대;성익환;조병욱
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.492-494
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry, We carried out chemical analysis, isotopic analysis, statistical analysis of Box-Whisker and trigging analysis for this study. The chemical and isotopic compositions of the groundwater is distinguished into two areas according to host rocks(Cretaceous sedimentary rocks and Jurassic granite) and recharge altitude, and is not greatly influenced by mineralization zone of the mines.

  • PDF

Genesis of Bonanza-style Ores in Uichang Area, Changwon City: Geochemical Interpretation by Reaction Path Modeling (창원시 의창지역 보난자형 금광상 성인 : 반응경로 모델링에 의한 지구화학적 해석)

  • Lee, Seung-han;No, Sang-gun;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.85-96
    • /
    • 2017
  • Gold mineralization of Samjeong and Yongjang gold mines in Uichang area shows characteristics of Bonanza-type gold deposits. Ores are mainly developed along the contact parts between quartz vein and arkosic sandstone beds(Fe-rich bed) in sedimentary rock. Electrum, silver sulfide and sulfate minerals are mainly in the ores. On the other hand, gold mineralization is less developed in cherty rock and andesitic rock than arkosic sandstone. The study highlights characteristics of gold precipitation in the deposit on the basis of numerical modelling of the reactions between the assumed hydrothermal ore fluids with multicomponent heterogeneous equilibrium calculations. Aqueous species, gases and minerals, containing electrum are included in the calculations. The reaction result between hydrothermal ore fluids and arkosic sandstone show that pH increasing in the ore-forming fluid would trigger precipitation of quartz, chlorite, sericite, chalcopyrite, galena, pyrite, electrum, actinolite and feldspar. The numerical modelling also illustrates the drastic increase of pH and desulfidation lead to precipitation of electrum. Ag/Au ratios in the ore vary with pH conditions and subsequently precipitation of silver-bearing sulfides such as acanthite and polybasite. The modelling of the reaction between andesitic rock and ore-forming fluid shows that mineral assemblages of the case are analogous to ones of the reaction between arkosic sandstone and fluid except the latter has little portion of electrum. The abovementioned modelling results suggest that gold-silver mineralization is bounded by host rocks at the study area.

Effect of Well Depth, Host Rocks and Mineralization Zone on Hydrochemical Characteristics of Groundwater in the Umsung Area (음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향)

  • Jeong Chan Ho;Lee Byung Dae;Sung Ig hwan;Cho Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.469-485
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry. The geology of the study area consists of Jurassic granite and Cretaceous sedimentary rocks, which are bounded by a fault. Most of shallow groundwaters exploited in the Jurassic granite area are used for agricultural purpose, whereas the deep groundwaters in the Cretaceous sedimentary rocks are used for a drinking water. The shallow groundwater shows weak acidic pH, the electrical conductivity ranging from $142\;to\;903\;{\mu}S/cm$, and the chemical type of $Ca-HCO_3\;to\;Ca-Cl(SO_4,\;NO_3)$. A few of shallow groundwaters are contaminated by nitrate, and show high concentration of Fe, Mn and Zn, that reflects the effect of a mineralization zone. The deep groundwater shows neutral to weak alkaline pH, higher electrical conductivity than that of shallow groundwater, and the chemical type of $Ca-HCO_3$. The seepage water from the abandoned mines does not have the characteristics such as acidic pH, high concentration of heavy metals and high sulfate content. The hydrogen and oxygen isotopes of groundwater indicates an altitude effect of the recharge area between deep groundwater and shallow groundwater. In conclusion, the chemical composition of groundwater complicately reflects the effects of their host rocks, well depth, agricultural activity and mineralization zone in the study area.

Potential Study for the Sedimentary Exhalative Pb-Zn Mineralization in Dyusembay Area, Kazakhstan (카자흐스탄 듀셈바이지역의 퇴적분기형 연-아연 광화작용에 대한 잠재력 연구)

  • No, Sang-gun;Lee, Seung-han;Park, Ki-woong;Jeong, Hyeon-guk;Yun, Ji-seong;Kim, Sun-ok;Park, Maeng-eon
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • Metasediment-hosted Pb-Zn mineralized zone has been found in Dyusembay of Kazakhstan. Its petrological properties, metal index, alteration index and redox-sensitivity are compared with those of SEDEX type deposit. Mineralization is developed along foliation of host rock (graphitic phyllite) and controlled by folds and faults; major ore minerals including pyrite, pyrrhotite, sphalerite, and galena are disseminated or interlayered with fine-grained quartz. The margin of the mineralized zone is metamorphosed accompanying sericite and chlorite. Hydrothermal brecciation and Pb-Zn mineralization formed in quartz-calcite stockworks are confirmed at the around of Maytyubin granitoid intrusions. The mineralization is classified into three types according to those of occurrence, paragenesis, chemical composition and isotopic characteristics. Type 1 whose fine-grained pyrite, pyrrhotite and sphalerite are formed in parallel yet discontinuous to well-developed foliations of the host rock; its geochemistry is similar to those of the earlier stage in SEDEX-type mineralization. In case of type 2, the ore minerals of which are concentrated being parallel to a foliation by regional metamorphism, and most of them associated with quartz and muscovite (${\pm}$ biotite) paragenetically. Type 3 is formed in the hydrothermal breccia zone whose ore minerals are controlled by foliation and breccia and developed in quartz ${\pm}$ calcite veins having a form such as stratification, stockwork or veinlets. Host rocks in the mineralized zone indicate homogeneous metamorphic grade and there is no specific alteration zonation. Also, all types (type 1, type 2, and type 3) represent similar REEs patterns, it can be interpreted that these are originated from a same source. Sulphides occurred in mineralized zone indicate a limited range of sulphur isotope values (type 2, ${\delta}^{34}S=-13.3{\sim}-11.7$‰; type 3, ${\delta}^{34}S=-13.9{\sim}-8.2$‰), and a result of geothermometry presents different temperature ranges: type 2($251{\pm}38^{\circ}C{\sim}277{\pm}40^{\circ}C$); type 3($360{\pm}2^{\circ}C$ to $537{\pm}29^{\circ}C$). It is estimated to be due to the effect of metamorphism and Maytyubin granitoid intrusions, respectively. In addition, ternary chart of thorium, scandium, and zircon for discrimination of tectonic setting and redox sensitivity using V/Mo values indicate that hydrothermal sediments put on reduction environment after precipitation, before being affected by metamorphism and intrusion activity. Geochemical data are plotted on a distal trend of SEDEX-type with discrimination plot using SEDEX index. As a result, petrological-geochemical properties demonstrate that Dyusembay Pb-Zn mineralized zone is comparable to distal-type of SEDEX deposit.

Geological Occurrence and Mineralogy of Pyrophyllite Deposits in the Jinhae Area (진해 납석광상의 산상과 광물학적 특성)

  • Kwack, Kyo-Won;Hwang, Jin-Yeon;Oh, Ji-Ho;Yoon, Keun-Taek;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.163-176
    • /
    • 2009
  • The pyrophyllite deposits located in Jinhae area have been studied through field observations and laboratory works including the X-ray diffraction (XRD), X-ray fluorescence (XRF), Electron probe microanalyzer (EPMA) and Inductively Coupled Plasma (ICP). The pyrophyllite deposits consist of mainly illite, dickite, pyrophyllite, diaspore, chlorite, pyrite and copiapite. According to the mineral assemblages, geological occurrences and alteration modes, the altered rocks can be classified into four types: Type A; quartz with silicifictaion, Type B; quartz + illite with illitization, Type C; quartz + dickite + illite with kaolin alteration, Type D; pyrophyllite + illite + dickite + diaspore with pyrophyllite alteraion. Rocks in Type A, which is generated by silicifictaion, have high $SiO_2$ contents more than 90 wt% and distinctive equigranular textures with microcrtstalline quartz. The pyrophyllites from the study area belong to 2M polytype. The host rocks of the pyrophyllite ore in this mine are rhyolitic rock, andecitic tuff and volcanic breccia. The alteration products seem to be controlled by the different lithology of the host rocks. The hydrothermal solution formed the deposits would be inferred to the acidic and have relatively high ionic activity of hydrogen and silica judging from alteration mineral assemblage. Pyrophyllite alteraion zone is generated by highest temperature condition of all alteration zone.

Evaluation of Soil-Water Characteristic Curve for Domestic Bentonite Buffer (국내 벤토나이트 완충재의 함수특성곡선 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Lee, Changsoo;Cho, Won-Jin;Lee, Seung-Rae;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • High-level radioactive waste (HLW) such as spent fuel is inevitably produced when nuclear power plants are operated. A geological repository has been considered as one of the most adequate options for the disposal of HLW, and it will be constructed in host rock at a depth of 500~1,000 meters below ground level with the concept of an engineered barrier system (EBS) and a natural barrier system. The compacted bentonite buffer is one of the most important components of the EBS. As the compacted bentonite buffer is located between disposal canisters with spent fuel and the host rock, it can restrain the release of radionuclides and protect canisters from the inflow of groundwater. Because of inflow of groundwater into the compacted bentonite buffer, it is essential to investigate soil-water characteristic curves (SWCC) of the compacted bentonite buffer in order to evaluate the entire safety performance of the EBS. Therefore, this paper conducted laboratory experiments to analyze the SWCC for a Korean Ca-type compacted bentonite buffer considering dry density, confined or unconfined condition, and drying or wetting path. There was no significant difference of SWCC considering dry density under unconfined condition. Furthermore, it was found that there was higher water suction in unconfined condition that in confined condition, and higher water suction during drying path than during wetting path.

Electrical Responses on the Auriferous Mineralized Bone in Sambo Mine (삼보광산 금 광화대에 대한 전기탐사 반응)

  • You Youngjune;Yoo In-Kol;Kim Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2004
  • Self-potential and electrical resistivity methods were conducted for locating the auriferous mineralized zone, called Jija Vein, of Sambo mine, Limsu-ri, Haeje-myeon, Muahn-gun, Jeollanam-do. The host rocks of the mineralization include gneiss, rhyolite and felsic dyke. Ore vein is mainly fissured-filling type and sulfide minerals, such as pyrite, are disseminated in country rock. By the electrical responses from SP and surface resistivity methods., the mineralized zone is supposed to extend about 360 m directed N5W with the width of 20 m to 30 m. From resistivity tomograms using inclined borehole to surface, the ore body shape is interpreted as the width of 20 m in depth 40 m to 50 m.