• Title/Summary/Keyword: Horticulture

Search Result 3,513, Processing Time 0.042 seconds

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings (온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향)

  • Jin Hee An;Eun Yong Choi;Yong Beom Lee;Ki Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.148-156
    • /
    • 2023
  • This study was conducted in an indoor cultivation room and chamber where environmental control is possible to investigate the effect of temperature and irrigation interval on photosynthesis, growth and growth analysis of potted seedling cucumber. The light intensity (70 W·m-2) and humidity (65%) were set to be the same. The experimental treatments were six combinations of three different temperatures, 15/10℃, 25/20℃, and 35/25℃, and two irrigation intervals, 100 mL per day (S) and 200 mL every 2 days (L). The treatments were named 15S, 15L, 25S, 25L, 35S, and 35L. Seedlings at 0.5 cm in height were planted in pots (volume:1 L) filled with sandy loam and treated for 21 days. Photosynthesis, transpiration rate and stomatal conductance at 14 days after treatment were highest in 25S. These were higher in S treatments with a shorter irrigation interval than L treatments. Total amount of irrigation water was supplied evenly at 2 L, but the soil moisture content was highest at 15S and lowest at 25S > 15L > 25L, 35S and 35L in that order. Humidity showed a similar trend at 15/10℃ (61.1%) and 25/20℃ (67.2%), but it was as high at 35/25℃ (80.5%). Cucumber growth (plant height, leaf length, leaf width, chlorophyll content, leaf area, fresh weight and dry weight) on day 21 was the highest in 25S. Growth parameters were higher in S with shorter irrigation intervals. Yellow symptom of leaf was occurred in 89.9% at 35S and 35L, where the temperature was high. Relative growth rate (RGR) and specific leaf weight (SLA) were high at 25/20℃ (25S, 25L), RGR tended to be high in the S treatment, and SLA in the L treatment. Water use efficiency (WUE) was high in the order of 25S, 25L > 15S > 15L, 35S, and 35L. As a result of the above, the growth and WUE were high at the temperature of 25/20℃.

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.

Comparison of Cold Hardiness in Canes and Buds of Kiwifruit Cultivars (품종에 따른 키위나무 눈과 가지의 내한성 비교)

  • Kim, H.L.;Chae, W.B.;Kim, J.G.;Lee, M.H.;Rhee, H.C.;Kim, S.H.;Kwack, Y.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.29-40
    • /
    • 2019
  • In Korea kiwifruit growing area is limited to southern coastal region and Jeju island, partly due to the lack of information on their cold hardiness in winter. This study was carried out to investigate cold hardiness of Korean kiwifruit cultivars in a period of dormancy for using it as preliminary data to expand the cultivation area of kiwifruit in Korea. A total of five kiwifruit cultivars in two species and hybrid, Actinidia deliciosa ('Hayward' and 'Garmrok'), A. chinensis ('Goldone') and A. arguta hybrid ('Bangwoori' and 'Skinny Green') were subjected to five freezing treatments of -12℃, -15℃, -18℃, -21℃ and -24℃. Cell membrane damage in all cultivars initiated in -18℃/32h and cell membrane stability was lost in -24℃ in most cultivars, except for 'Skinny Green'. Cold hardiness was estimated by 50% lethal temperature (LT50) which was determined by triphenyl tetrazolium chloride (TTC) reduction. In branches, LT50 was -15℃ in 'Hayward' and 'Garmrok', -18℃ in 'Bangwoori' and -21℃ in 'Goldone.' The LT50 of buds on 'Hayward' and 'Garmrok' was 56 and 42 hours in -15℃ and 4 and 11 hours in -18℃, respectively; however, LT50 of buds on 'Goldone' was 51 hours in -18℃ and that on 'Bangwoori' was 3 hours in -24℃. Cold hardiness results imply that it may be difficult for cultivars in A. deliciosa such as 'Hayward' and 'Garmrok' to be grown in the north of southern coastal region in Korea; however, it can be possible for several cultivars in A. chinensis and A. arguta hybrid to be grown in the northern part of Korean kiwifruit belt if cold tolerance in the thaw is confirmed.

Comparison of Fruit Characteristics of 'Fuji'/M.26 in Response to Ethephon Treatment and Combined Treatment of Ethephon and CaCl2 During Maturing Stages (Ethephon 단용처리와 Ethephon 및 염화칼슘 혼합처리에 따른 사과 'Fuji'/M.26의 성숙기 과실특성 비교)

  • Sewon Oh;Seong Ho Moon;Keum-Il Jang;Junsoo Lee;Daeil Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.517-526
    • /
    • 2023
  • The harvest time of the late-ripening 'Fuji' apple (Malus × domestica) is variable, depending on the coloration of the fruit skin. Ethephon, a plant growth regulator, promotes the ethylene production and induces physiological responses associated with fruit maturation in climacteric fruit crops, such as apples. This study aimed to investigate the effect of ethephon treatment on fruit characteristics after fruit enlargement, with the objective of proposing an economical and stable harvest control method for 'Fuji'/M.26 apples. Fruit characteristics were assessed at 10-days intervals following the application of 100 mg/L ethephon and mixture of 100 mg/L ethephon and 0.5% CaCl2 at 145 days after full bloom (DAFB). Starch contents of ethephon-treated (ET) and ethephon with CaCl2-treated (EC) apples began to decrease from 155 DAFB, and the starch contents of ET and EC at 10 days before harvest were similar to those of control at harvest time. Red coloration of fruit skin in EC was lower compared to ET but higher than control. The average fruit firmness was low in ET, while the control and EC exhibited similar levels of firmness. Fruit sugar acid ratios did not show significant differences between treatments. However, the titratable acidity of EC was significantly lower than that of the control at 10 days before harvest. Moreover, fruit sugar acid ratio of ET and EC at 10 days before harvest in 2021 was similar to their sugar acid ratio at harvest time. Therefore, it was thought that fruit maturation and skin coloration could be accelerated by 10 days from the harvest time through the combined treatment of 100 mg/L ethephon and 0.5% CaCl2 at the end of fruit enlargement in 'Fuji'/M.26.

Introduction of List of Plant Diseases in Korea 6.1st Edition (2023 Revised Version) (한국식물병명목록 6.1판(2023 개정본))

  • Seon-Hee Kim;Jaehyuk Choi;Young-Joon Choi;Byeong-Yong Park;Su-Heon Lee;Gyoung Hee Kim;Hyun Gi Kong;Donggun Kim;Soonok Kim;Youngho Kim;Chang-Gi Back;Hee-Seong Byun;Jang Kyun Seo;Jun Myoung Yu;Ju-Yeon Yoon;Dong-Hyeon Lee;Seung-Yeol Lee;Seungmo Lim;Yongho Jeon;Jaeyong Chun;Insoo Choi;In-Young Choi;Hyo-Won Choi;Jin Sung Hong;Seung-Beom Hong
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.331-344
    • /
    • 2023
  • More than a year has passed after the 6th edition of 'List of Plant Diseases in Korea (LPDK)' was published in April 2022. The 6.1st edition (2023) of List of Plant Diseases in Korea was made by correcting errors found in the 6th edition of list and adding new diseases reported after the 6th edition. There were 397 corrections from the 6th edition, most of which were simple spelling errors or minor issues. However, 12 diseases were deleted due to duplication or unclear literature proof, and 2 diseases had their diseases' common names changed. We added 158 diseases that were reported before 2021 but not included in the 6th edition, or reported after the 6th edition. After all, 146 diseases were added to the 6,534 diseases in the 6th edition, resulting in a total of 6,680 diseases in the 6.1st edition. Thirty host taxa were also added, increasing the number from 1,390 in the 6th edition to 1,420 in the 6.1st edition. Pathogens were also added to 62 taxa, from 2,400 in the 6th edition, bringing the total to 2,462 taxa in the 6.1st edition. Ultimately, the 6.1st edition (2023) of 'The List of Plant Diseases in Korea' contains 6,680 diseases caused by pathogens of 2,462 taxa on 1,420 hosts. The 6.1st edition is not printed as a book, but is provided through the online 'List of Plant Diseases in Korea' (https://genebank. rda.go.kr/kplantdisease.do).

Yearly Update of the List of Plant Diseases in Korea (6.2 Edition, 2024) (한국식물병명목록의 연간 현황 보고(6.2판, 2024년 개정본))

  • Jaehyuk Choi;Seon-Hee Kim;Young-Joon Choi;Gyoung Hee Kim;Ju-Yeon Yoon;Byeong-Yong Park;Hyun Gi Kong;Soonok Kim;Sekeun Park;Chang-Gi Back;Hee-Seong Byun;Jang Kyun Seo;Jun Myoung Yu;Dong-Hyeon Lee;Mi-Hyun Lee;Bong Choon Lee;Seung-Yeol Lee;Seungmo Lim;Yongho Jeon;Jaeyong Chun;Insoo Choi;In-Young Choi;Hyo-Won Choi;Jin Sung Hong;Seung-Beom Hong
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.103-113
    • /
    • 2024
  • Since 2009, the Korean Society of Plant Pathology has established the Committee on Common Names of Plant Disease to systematically review and determine plant disease names and related terminologies. The committee published the 6th edition of the List of Plant Diseases in Korea (LPDK) in 2022, and the list has been made publicly accessible online. The online database has significantly enhanced user accessibility, expedited update processes, and improved interoperability with other databases. As a result, the 6.1 edition of the list was released by online LPDK in 2023, detailing new disease names added over the preceding year and revisions to existing names. Subsequently, in 2024, the 6.2 edition was published, encompassing 6,765 diseases caused by 2,503 pathogen taxa across 1,432 host species. The public release of the online database has, however, introduced several challenges and tasks. Addressing these issues necessitates the development of modern, standardized nomenclature guidelines and a robust system for the registration of new disease names. Open communication and collaboration among the diverse members of the Korean Society of Plant Pathology are required to ensure the reliability of the LPDK.

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing (큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석)

  • Ho Yong Shin;Chang Yoon Ji;Ho Soo Kim;Jung-Sung Chung;Sung Hwan Choi;Sang-Soo Kwak;Yun-Hee Kim;Jeung Joo Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.1-10
    • /
    • 2023
  • Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.

Estimation of Days to Flowering according to Various Altitudes and the Effect of Sowing Dates on Growth Characteristics of Safflower (잇꽃 재배지대에 따른 개화 소요일수 추정 및 파종시기별 생육 특성)

  • Young Min Choi;Jeong Seop Moon;Dong Chun Cheong;Eunae Yoo;Hee Kyung Song;Seung Yoon Lee;Jin Jae Lee;So Ra Choi;Hong Ki Kim
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.161-170
    • /
    • 2024
  • This study was conducted to estimate the days to flowering based on the effective accumulated temperature at various altitudes in the Jiri mountain region and to compare growth and yield characteristics according to the sowing date of safflower (Carthamus tinctorius) four genetic resources (local variety, IT323225, IT333473, and IT333482). The safflower four resources were sown on March 29, May 3, May 13, May 24, and June 2. The days from sowing to flowering of the safflower four resources by sowing dates were in the order of the local variety (61.0 days), IT333482 (73.2 days), IT323225 (74.0 days), and IT333473 (74.2 days). The base temperature and effective accumulated temperature for the days to flowering of the safflower four resources calculated based on the daily mean temperature were local variety 6℃, 579℃, IT323225 11℃, 766℃, IT333473 11℃, 768℃, IT333482 10℃, 750℃, respectively. As a result of applying the calculated effective accumulated temperature and daily mean temperature of the past five years (2019 to 2023) by various altitudes and the different sowing dates (every 15 days from April 1 to August 15), the days to flowering of the safflower four resources decreased from April 1 to July 15 during the sowing date and then tended to increase from August 1. In addition, the days to flowering at various altitudes were investigated in the order of plains, mid-mountain, and mountain regions. Among the yield characteristics, plant height, number of branches, number of capitula, number of seeds, and seed weight decreased as the sowing dates were delayed for the safflower four resources.

Effect of Low Temperature Treatment of Seed Bulb and Planting Date on Plant Growth and Yield in Garlic (마늘의 파종기별(播種期別) 저온처리(低溫處理)의 차이(差異)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Shin, Seong Lyon;Lee, Woo Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.49-69
    • /
    • 1988
  • In order to develop a cropping system that can produce garlic in the period of short supply from March to April, effects of low temperature treatment of seed bulbs and planting dates, starting date of low temperature treatment, days of low temperature treatment on plant growth, maturity and yield were studied in Southern strain, 'Namhae' and in Northern strain, 'Euiseong' of garlic (Allium sativum). The results obtained were as follows. In Sorthern strain, sprouting was significantly enhanced by low temperature treatment only in Sep. 14, and Sep. 29 plantings. Days to sprout were least in 30 days of low temperature treatment of Sep. 14 planting and in 45 days treatment of Sep. 29 planting. When considering on the beginning date of low temperature treatment, a marked difference was observed between treatments started before July 31 and after Aug. 15. Sprouting was most enhanced in 45 days low temperature treatment of Aug. 15 and Aug. 30 plantings. In Northern strain, sprouting was en hanced by low temperature treatment in planting from Sep. 29 to Nov. 13 and low temperature treatment for 60 days was most effective. Effect of low temperature treatment on early plant growth was observed in Sep. 14 and Sep. 29 plantings, but the effect on plant growth at intermediate stage or thereafter was observed in up to Oct. 29 plantings. Optimun days for low temperature treatment on growth enhancement was 45 and 60 days in Southern strain and 60 days in Northern strain in each planting dates. In Southern strain, the longer the low temperature treatment and the later the planting date the less the number of leaves developed. In Northern strain, normal leaves were not developed in plantings from Sep. 14 to Nov. 13. In Southern strain, clove differentiation and bulbing were earlist in 45 and 60 days treatment of Sep. 14, Sep. 29, and Oct. 14 planting initiated on July 31 and Aug. 15. In Northern strain, clove differentiation and bulbing were earlist in 60 days treatment of Oct. 14 planting initiated on Aug. 15 and Aug. 30. In treatment initiated later than above, longer the low temperature treatment the earlier the clove differentiation and bulbing in both Southern and Northern strains. The earlier the initiation date and the longer of low temperature treatment, the earlier bolting in southern strain. In Northern strain, bolting was most enhanced in 45 and 60 days of low temperature treatment initiated on Aug. 15 and Aug. 30. The longer the low temperature treatment in plantings thereafter, the earlier the bolting. The earlier the planting date garlic bulbs. Harvest date was earliest in 45 and 60 days low temperature treatment started from July 31 to Aug. 30 in Southern strain, and it was in 60 and 90 days low temperature treatment initiated from July 31 to Aug. 30 in Northern strain. Bulb weight was heaviest in 45 days low temperature treatment of Oct. 14 planting and next was in 45 days treatment of Sep. 29 planting in Southern strain. In Northern strain, bulb weight was heaviest in 60 days treatment of Oct. 14 planting and next was in 45 days treatment of Oct. 14 planting. When considered in the aspect of the beginning date of low temperature treatment, bulb weight was heaviest in 45 days treatment started on Aug. 30 in Southern strain and in 60 days treatment started on Aug. 15 in Northern strain. A high negative correlation between days to harvest and plant height on January 12, and a high positive correlation between days to harvest and days clove differentiation were observed. This indicates that enhanced plant growth and clove differentiation induced by low temperature treatment advanced the harvest date. A high negative correlation between bulb weight and days to clove differentiation, days to harvest suggests that the enhanced clove differentiation result and in heavier bulb weight. From the above results, it suggested that early crop of garlic can be harvested by planting at the period of Sep. 29 to Oct. 14 after 45 days of low temperature treatment of seed bulbs of Southern strain. Then harvest date can be shortened by 30 days compared to control and garlic can be harvested in early April.

  • PDF