DOI QR코드

DOI QR Code

Comparison of Cold Hardiness in Canes and Buds of Kiwifruit Cultivars

품종에 따른 키위나무 눈과 가지의 내한성 비교

  • Kim, H.L. (Namhae Branch, National Institute of Horticultural and Herbal Science) ;
  • Chae, W.B. (Namhae Branch, National Institute of Horticultural and Herbal Science) ;
  • Kim, J.G. (Department of Horticulture, Gyeongsang National University) ;
  • Lee, M.H. (Namhae Branch, National Institute of Horticultural and Herbal Science) ;
  • Rhee, H.C. (Namhae Branch, National Institute of Horticultural and Herbal Science) ;
  • Kim, S.H. (Department of Fruit Science, Korea National College of Agriculture and Fisheries) ;
  • Kwack, Y.B. (Department of Fruit Science, Korea National College of Agriculture and Fisheries)
  • 김홍림 (농촌진흥청 국립원예특작과학원) ;
  • 채원병 (농촌진흥청 국립원예특작과학원) ;
  • 김진국 (국립경상대학교 원예학과) ;
  • 이목희 (농촌진흥청 국립원예특작과학원) ;
  • 이한철 (농촌진흥청 국립원예특작과학원) ;
  • 김승희 (국립한국농수산대학 과수학과) ;
  • 곽용범 (국립한국농수산대학 과수학과)
  • Received : 2019.03.06
  • Accepted : 2019.04.30
  • Published : 2019.06.28

Abstract

In Korea kiwifruit growing area is limited to southern coastal region and Jeju island, partly due to the lack of information on their cold hardiness in winter. This study was carried out to investigate cold hardiness of Korean kiwifruit cultivars in a period of dormancy for using it as preliminary data to expand the cultivation area of kiwifruit in Korea. A total of five kiwifruit cultivars in two species and hybrid, Actinidia deliciosa ('Hayward' and 'Garmrok'), A. chinensis ('Goldone') and A. arguta hybrid ('Bangwoori' and 'Skinny Green') were subjected to five freezing treatments of -12℃, -15℃, -18℃, -21℃ and -24℃. Cell membrane damage in all cultivars initiated in -18℃/32h and cell membrane stability was lost in -24℃ in most cultivars, except for 'Skinny Green'. Cold hardiness was estimated by 50% lethal temperature (LT50) which was determined by triphenyl tetrazolium chloride (TTC) reduction. In branches, LT50 was -15℃ in 'Hayward' and 'Garmrok', -18℃ in 'Bangwoori' and -21℃ in 'Goldone.' The LT50 of buds on 'Hayward' and 'Garmrok' was 56 and 42 hours in -15℃ and 4 and 11 hours in -18℃, respectively; however, LT50 of buds on 'Goldone' was 51 hours in -18℃ and that on 'Bangwoori' was 3 hours in -24℃. Cold hardiness results imply that it may be difficult for cultivars in A. deliciosa such as 'Hayward' and 'Garmrok' to be grown in the north of southern coastal region in Korea; however, it can be possible for several cultivars in A. chinensis and A. arguta hybrid to be grown in the northern part of Korean kiwifruit belt if cold tolerance in the thaw is confirmed.

국내 키위 재배지역은 품종별 내한성에 대한 정보부재로 남부 해안지역과 제주도에 국한돼 있다. 본 연구는 국내육성 품종의 휴면기 내한성을 구명하여 국내품종의 확대보급을 위한 기초자료로 활용하고자 수행하였다. 본 연구는 국내외에서 육성된 5품종(Actinidia deliciosa, A. chinensis, A. arguta hybrid)을 대상으로 수행했으며, 내한성 처리는 -12℃, -15℃, -18℃, -21℃, -24℃ 5수준을 처리했다. A. deliciosa와 A. chinensis 계열의 세포막 손상은 -18℃/32h 노출 시 시작되며, -24℃에서는 '스키니그린'을 제외한 모든 품종의 막 구조물 안정성이 상실된다. TTC 환원율에 기초한 가지의 내한성(LT50)은 '헤이워드', '감록'이 -15℃, '방울이'는 -18℃ 그리고 '골드원'은 -21℃에서 유효하였다. 품종별 눈의 내한성(LT50)이 상실되는 조건은 '헤이워드', '감록'은 -15℃에서 각각 56시간과 42시간 노출 조건이었고, -18℃에서는 각각 4시간과 11시간 노출에서 LT50 수준에 도달하는 것으로 추정되었다. '골드원'은 -18℃에서는 51시간 노출에서 내한성이 상실되었다. 방울이'는 -24℃/3 h 노출에서 내한성이 상실되었다. 따라서 본 연구는 '헤이워드', '감록'과 같은 A. deliciosa에 속한 품종은 남부지역에 제한된 재배영역을 벗어나기 어려울 것으로 판단되나, A. chinensis인 '골드원'과 A. arguta hybrid인 '방울이', '스키니그린'은 해빙기 내한성이 확인된다면 재배지역의 북상 확대가 가능하리라 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구개발과제(PJ010986)에 의해 수행된 결과이며 이에 감사드립니다.

References

  1. Arora, R., M. E. Wisniewski and R. Scorza. (1992). Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch): I. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol. 99(4):1562 -1568.
  2. Arora, R., L. J. Rowland, J. S. Lehmann, C. C. Lim, G. R. Panta and N. Vorsa. (2000). Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor. Appl. Genet. 100(5):690-696.
  3. Chat, J. (1995). Cold hardiness within the genus Actinidia. HortScience 30(2):329-332.
  4. Cho, K. H., Y. B. Kwack, S. J. Park, S. H. Kim, H. C. Lee and M. Y. Kim. (2017). Genetic diversity in kiwifruit germplasm evaluated using RAPD and SRAP markers. J Plant Biotechnol. 44(3) :303-311.
  5. Dozier, W. A., A. W. Caylor, D. G. Himelrick, A. A. Powell, A. J. Latham, J. A. Pitts and J. A. McGuire. (1992). Cold protection of kiwifruit plants with trunk wraps and microsprinkler irrigation. HortScience 27(9):977-979.
  6. Ehlenfeldt, M. K., E. L. Ogden, L. J. Rowland and B. Vinyard. (2006). Evaluation of midwinter cold hardiness among 25 rabbiteye blueberry cultivars. HortScience 41(3):579-581.
  7. Ercoli, L., M. Mariotti, A. Masoni and I. Arduini. (2004). Growth responses of sorghum plants to chilling temperature and duration of exposure. Eur. J. Agron. 21(1):93-103.
  8. Ferguson, A. R. (1999). New temperate fruits: Actinidia chinensis and Actinidia deliciosa. Perspectives on new crops and new uses:342-347.
  9. Flinn, C. L. and E. N. Ashworth. (1994). Blueberry flower-bud hardiness is not estimated by differential thermal analysis. J. Am. Soc. Hortic. Sci. 119(2):295 -298.
  10. Guak, S., D. M. Olsyzk, L. H. Fuchigami and D. T. Tingey. (1998). Effects of elevated CO2 and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii). Tree Physiol. 18(10):671-679.
  11. Gusta, L. V., N. J. Tyler and T. H. H. Chen. (1983). Deep undercooling in woody taxa growing north of the -40℃ isotherm. Plant Physiol. 72(1):122-128.
  12. Hewett, E. W. and K. Young. (1981). Critical freeze damage temperatures of flower buds of kiwifruit (Actinidia chinensis Planch.). New Zeal. J. Agr. Res. 24(1):73-75.
  13. Kacperska, A. and R. K. Szaniawski. (1993). Frost resistance and water status of winter rape leaves as affected by differential shoot/root temperature. Physiol. Plantarum 89(4):775-782.
  14. Kamota, F., H. Honjo and M. S. Kim. (1989). Estimationof favourable locations for kiwifruit(Actinidia deliciosa Liang et Ferguson) cultivation in Japan. Bulletin of the Fruit Tree Research Station Series A 16:99-113.
  15. Levitt, J. (1980). Responses of plants to environmental stresses. Vol. 1. Chilling, freezing and high temperature stresses. p.497, 2nd ed. New York, Academic Press.
  16. Lim, C. C., R. Arora and E. C. Townsend. (1998). Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. J. Am. Soc. Hortic. Sci. 123(2):246-252.
  17. Malone, S. R. and E. N. Ashworth. (1991). Freezing stress response in woody tissues observed using low- temperature scanning electron microscopy and freeze substitution techniques. Plant Physiol. 95(3):871-881.
  18. Manley, R. C. and R. L. Hummel. (1996). Index of injury compared to tissue ionic conductance for calculating freeze damage of cabbage tissues. J. Am. Soc. Hortic. Sci. 121(6):1141-1146.
  19. Murray, M. B., J. N. Cape and D. Fowler. (1989). Quantification of frost damage in plant tissues by rates of electrolyte leakage. New phytol. 113(3): 307-311.
  20. Nesbitt, M. L., R. C. Ebel, D. Findley, B. Wilkins, F. Woods & D. Himelrick. (2002). Assays to assess freeze injury of Satsuma mandarin. HortScience, 37(6), 871-877.
  21. Palta, J. P., J. Levitt and E. J. Stadelmann. (1978). Plant viability assay. Cryobiol. 15(2):249-255.
  22. Pellett, H. (1971). Comparison of cold hardiness levels of root and stem tissue. Can. J. Plant Sci. 51(3):193-195.
  23. Piotrowska, G. and A. Kacperska. (1990). Utility of leaf disks cultured in vitro for studies on frost resistance. Plant Cell Tiss. Org. 22(1):21-26.
  24. Pyke, N. B., C. J. Stanley and I. J. Warrington. (1986). Kiwifruit: frost tolerance of plants in controlled frost conditions. New Zeal. J. Exp. Agr. 14(4): 443-447.
  25. Quamme, H. A., R. E. C. Layne and W. G. Ronald. (1982). Relationship of supercooling to cold hardiness and the northern distribution of several cultivated and native Prunus species and hybrids. Can. J. Plant Sci. 62(1):137-148.
  26. Sakai, A. and W. Larcher. (1987). Frost survival of plants, ecological studies, pp.39-54, Springer Verlag, Germany.
  27. Steponkus, P. L. and F. O. Lanphear. (1967). Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol. 42(10) :1423-1426.
  28. Sutinen, M. L., J. P. Palta and P. B. Reich. (1992). Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method. Tree Physiol. 11(3):241-254.
  29. Testolin, R. and R. Messina. (1987). Winter cold tolerance of kiwifruit. A survey after winter frost injury in northern Italy. New Zeal. J. Exp. Agr. 15(4):501-504.
  30. Tignor, M. E., F. S. Davies, W. B. Sherman and J. M. Davis. (1997). Rapid freeze acclimation of Poncirus trifoliata seedlings exposed to 10℃ and long days. HortScience. 32(5):854-857.
  31. Thomas, F. M. and U. Ahlers. (1999). Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks (Quercus petraea and Q. robur). New Phytol. 144(1):73-83.
  32. Wolpert, J. A. and G. S. Howell. (1984). Effects of cane length and dormant season pruning date on cold hardiness and water content of Concord bud and cane tissues. Am. J. Enol. Viticult. 35(4):237-241.
  33. Wu, M. T. and S. J. Wallner. (1983). Heat stress responses in cultured plant cells: Development and comparison of viability tests. Plant Physiol. 72(3):817-820.