• Title/Summary/Keyword: Horticultural activity

Search Result 605, Processing Time 0.027 seconds

Effects of Rhizobium Inoculation on the changes of Ureide-N and Amide-N Concentration in Stem and Root exudate of Soybean Plant (대두근류균(大豆根瘤菌) 접종(接種)이 뿌리와 줄기 즙액중(汁液中) Amide-N 및 Ureide-N 농도(濃度)에 미치는 영향(影響))

  • Ko, Jae-Young;Suh, Jang-Sun;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.329-336
    • /
    • 1989
  • A series of green house experiment was conducted to find but the effect of fertilizer application and inoculation of rhizobium on the changes of amide-N, ureide-N and $NH_4-N$ concentration in stem and root exudates of soybean plant growth. The results obtained were summarized as follows ; 1. Five strains of indigenous Rhizobium japonicum-nitrogen fixing activity($C_2H_2$-reducing activity) was more than 6.4 to 20.1 nmole/hr/tube-were identified from 37 soil samples in 22 areas of farmers field throughout country. 2. These identified 5 strains of rhizobium were obtained high nitrate reductase but low ammonium and nitrite oxidase activities. Among 5 strains of rhizobium the Rhizobium japonicum RjK-134 was applied for this green house experiment. 3. Dry matter yield was increased by the combination of inoculation of Rhizobium japonicum RjK-134 with no fertilizer and without nitrogen fertilizer application. However, dry matter yield was decreased with application of N and NPK with inoculation of rhizobium. 4. The concentrations of amide-N and ureide-N were increased in xylem sap than that of root exudate and higher concentration was obtained ar 30 days after planting than flowering stage (45 days after planting). 5. The combination of NPK application with inoculation of Rhrizobium japonicum RjK-134 enhanced the increase of amide-N and ureide-N concentration in xylem sap and root exudate. 6. High ammonium-N concentration in xylem sap and root exudate were obtained in combination with without-fertilizer under no inoculation of rhizobium and N and NPK application with inoculation of rhizobium.

  • PDF

Protective Effect of the Ethyl Acetate-fraction of Methanol Extract of Ophiophogon japonicus on Amyloid beta Peptide-induced Cytotoxicity in PC12 Cells (소엽맥문동-에틸아세테이트 분획물의 아밀로이드 베타단백질-유발 세포독성에 대한 억제 효능)

  • Moon, Ja-Young;Kim, Eun-Sook;Choi, Soo-Jin;Kim, Jin-Ik;Choi, Nack-Shik;Lee, Kyoung;Park, Woo-Jin;Choi, Young-Whan
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.173-180
    • /
    • 2019
  • Amyloid ${\beta}$-protein ($A{\beta}$) is the principal component of senile plaques characteristic of Alzheimer's disease (AD) and elicits a toxic effect on neurons in vitro and in vivo. Many environmental factors, including antioxidants and proteoglycans, modify $A{\beta}$ toxicity. It is worthwhile to isolate novel natural compounds that could prove therapeutic for patients with AD without causing detrimental side effects. In this study, we investigated the in vitro neuroprotective effects of the ethyl acetate fraction of methanol extract of Ophiophogon japonicas (OJEA fraction). We used an MTT reduction assay to detect protective effects of the OJEA fraction on $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells. We also used a cell-based ${\beta}$-secretase assay system to investigate the inhibitory effect of the OJEA fraction on ${\beta}$-secretase activity. In addition, we performed an in vitro lipid peroxidation assay to evaluate the protective effect of the OJEA fraction against oxidative stress induced by $A{\beta}_{25-35}$ in PC12 cells. The OJEA fraction had strong protective effects against $A{\beta}_{25-35}$-induced cytotoxicity to PC12 cells and was strongly inhibitory to ${\beta}$-secretase activity, which resulted in the attenuation of $A{\beta}$ generation. In addition, the OJEA fraction significantly decreased malondialdehyde (MDA) content, which is induced by the exposure of PC12 cells to $A{\beta}_{25-35}$. Our results suggested that the OJEA fraction contained active compounds exhibiting a neuroprotective effect on $A{\beta}$ toxicity.

Evaluation of Susceptibility of Western Flower Thrips (Frankliniella occidentalis) and Garden Thrips (F. intonsa) to 51 Insecticides (꽃노랑총채벌레와 대만총채벌레에 대한 51종의 살충제 감수성 평가)

  • Cho, Sung Woo;Kyung, Yejin;Cho, Sun-Ran;Shin, Soeun;Jeong, Dae Hun;Kim, Sung Il;Park, Geun-Ho;Lee, Seung-Ju;Lee, Young-Su;Kim, Min-Ki;Jo, In-Jun;Koo, Hyun-Na;Kim, Hyun Kyung;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.221-231
    • /
    • 2018
  • The susceptibility of the western flower thrips, Frankliniella occidentalis and garden thrips, Frankliniella intonsa was evaluated using 51 commercial insecticides. 15 kinds of insecticides which showed more than 90% mortality against both thrips, F. occidentalis and F. intonsa was selected. Many active ingredients were misused and abused in commercial mixture formulation insecticides. Since the F. intonsa was more susceptible than F. occidentalis, it was considered that both thrips can be controlled by insecticides that showed insecticidal activity on the F. occidentalis. Lethal time ($LT_{50}$ and $LT_{95}$), systemic toxicity and residual toxicity of selected insecticides were compared. Both chlorpyrifos WP and chlorpyrifos + diflubenzuron WP revealed the fastest toxicity within 2 h ($LT_{95}$), while spinetoram WG revealed the slowest toxicity as 62.3 h ($LT_{95}$). Chlorfenapyr SC showed toxicity at foliar and drenching application while spinetoram WG was toxic only in foliar application. Chlorfenapyr SC showed residual effect at 3, 5, 7, 10, 15 days after treatment and both benfuracarb WG and chlorpyrifos WP showed residual effect at 3 days after treatment. As a result of treatment of selected insecticides for field population of F. occidentalis, the population collected from horticultural crops showed lower susceptibility than the population collected from vegetable crops.

Growth and Physiological Adaptations of Tomato Plants (Lycopersicon esculentum Mill) in Response to Water Scarcity in Soil (토양 수분 결핍에 따른 토마토의 생육과 생리적응)

  • Hwang, Seung-Mi;Kwon, Taek-Ryun;Doh, Eun-Soo;Park, Me-Hea
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.266-274
    • /
    • 2010
  • This study aim to investigate fundamentally the growth and physiological responses of tomato plants in responses to two different levels of water deficit, a weak drought stress (-25 kPa) and a severe drought stress (-100 kPa) in soil. The two levels of water deficit were maintained using a micro-irrigation system consisted of soil sensors for the real-time monitoring of soil water content and irrigation modules in a greenhouse experiment. Soil water contents were fluctuated throughout the 30 days treatment period but differed between the two treatments with the average -47 kPa in -25 kPa set treatment and the -119 kPa in -100 kPa set treatment. There were significant differences in plant height between the two different soil water statuses in plant height without differences of the number of nodes. The plants grown in the severe water-deficit treatment had greater accumulation of biomass than the plants in the weak water-deficit treatment. The severe water-deficit treatment (-119 kPa) also induced greater leaf area and leaf dry weight of the plants than the weak water-deficit treatment did, even though there was no difference in leaf area per unit dry weight. These results of growth parameters tested in this study indicate that the severe drought could cause an adaptation of tomato plants to the drought stress with the enhancement of biomass and leaf expansion without changes of leaf thickness. Greater relative water content of leaves and lower osmotic potential of sap expressed from turgid leaves were recorded in the severe water deficit treatment than in the weak water deficit treatment. This finding also postulated physiological adaptation to be better water status under drought stress. The drought imposition affected significantly on photosynthesis, water use efficiency and stomatal conductance of tomato plants. The severe water-deficit treatment increased PSII activities and water use efficiency, but decreased stomatal conductance than the weak water-deficit treatment. However, there were no differences between the two treatments in total photosynthetic capacity. Finally, there were no differences in the number and biomass of fruits. These results suggested that tomato plants have an ability to make adaptation to water deficit conditions through changes in leaf morphology, osmotic potentials, and water use efficiency as well as PSII activity. These adaptation responses should be considered in the screening of drought tolerance of tomato plants.

The Effect of protein and lipioperoxide on White Ginseng(WG) and Fermenta Ginseng(FG) Extracts on the liver in Mice that was irradiated by radiation (방사선이 조사된 생쥐 간에서 백삼과 발효인삼추출물이 단백질 및 지질과산화에 미치는 효과)

  • Ko, In-Ho;Chang, Chae-Chul;Koh, Jeong-Sam
    • Journal of radiological science and technology
    • /
    • v.27 no.3
    • /
    • pp.43-50
    • /
    • 2004
  • The effects of ginseng extracts on liver damage induced by high energy x-ray were studied. To one group of ICR male mice were given white(50 mg/kg/day for 7 days, orally) and fermenta ginseng extracts(500 mg/kg/day for 7 days, orally)before irrdiation. To another group were irradiated by 5 Gy dose of high energy x-ray. Contrast group were given with saline(0.1 ml). This study also investigated the effect between MDA, protein content and ginseng extracts on hepatic damage. This study measured the level of MDA(malondialdehyde), protein content in liver tissue. Administrating orally white (50 mg/kg/day for 7 days, orally)and fermenta ginseng extracts(500 mg/kg/day), the level of MDA were generally decreased and the inhibition was increased. And the protein contents were identical with control group. After irradiation, the protein contents were increased and MDA(malondialdehyde) was increased. Therefore, ginseng extracts increased antioxidative enzyme activity. And We know that the antioxidatant effect of extracts from white and fermenta ginseng protect radiation damage by direct antioxidant effect involving SOD, CAT, GPX. It was included that ginsengs can protect against the lipid peroxidation in radiation damage through its antioxidatant properties.

  • PDF