• Title/Summary/Keyword: Horseshoe

Search Result 168, Processing Time 0.035 seconds

Comparing MCMC algorithms for the horseshoe prior (Horseshoe 사전분포에 대한 MCMC 알고리듬 비교 연구)

  • Miru Ma;Mingi Kang;Kyoungjae Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.103-118
    • /
    • 2024
  • The horseshoe prior is notably one of the most popular priors in sparse regression models, where only a small fraction of coefficients are nonzero. The parameter space of the horseshoe prior is much smaller than that of the spike and slab prior, so it enables us to efficiently explore the parameter space even in high-dimensions. However, on the other hand, the horseshoe prior has a high computational cost for each iteration in the Gibbs sampler. To overcome this issue, various MCMC algorithms for the horseshoe prior have been proposed to reduce the computational burden. Especially, Johndrow et al. (2020) recently proposes an approximate algorithm that can significantly improve the mixing and speed of the MCMC algorithm. In this paper, we compare (1) the traditional MCMC algorithm, (2) the approximate MCMC algorithm proposed by Johndrow et al. (2020) and (3) its variant in terms of computing times, estimation and variable selection performance. For the variable selection, we adopt the sequential clustering-based method suggested by Li and Pati (2017). Practical performances of the MCMC methods are demonstrated via numerical studies.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.

TREATMENT OF CLASS Ⅲ MALOCCLUSION WITH HORSESHOE APPLIANCE : CASE REPORT (Horseshoe Appliance를 이용한 Ⅲ급 부정교합의 치험례)

  • Hong, Han-Young;Park, Jae-Hong;Choi, Yeong-Chul;Kim, Kwang-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.376-381
    • /
    • 2008
  • In mixed dentition there exists many empty spaces in the arch due to eruption of permanent teeth and exfoliation of primary teeth. The empty spaces makes it difficult to apply fixed orthodontic appliances. Horseshoe Appliance can be used effectively at this stage, holding the whole dentition in one piece. It covers every surface of erupted teeth and prevents extrusion and rotation of single tooth. By using intermaxillary elastic force, remodeling of the alveolar bone is opposite in each arch. In patients who were treated with horseshoe appliance, forward growth of maxilla, labioversion of maxillary incisors and linguoversion of mandibular incisors were obtained. Minimum downward and clockwise rotation of mandible was shown, so increasing anterior facial height was minimized.

  • PDF

ORTHODONTIC MANAGEMENT OF CLASS III MALOCCLUSION WITH HORSESHOE APPLIANCE (Horseshoe Appliance를 이용한 III급 부정교합의 교정적 접근)

  • Han, Ji-Hye;Baik, Byeong-Ju;Yang, Yeon-Mi;Seo, Jeong-Ah;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.4
    • /
    • pp.675-681
    • /
    • 2005
  • The Horseshoe appliance was introduced by Dr. Schwarz, and it is used to correct sagittal relationships by elastic force in class III malocclusion. It minimizes the increment of lower anterior facial height and allows the mandible to be repositioned harmoniously with the soft tissue and muscle matrix of the jaw It has the advantages of better patient cooperation, easier construction, and more effective modification. In the patients who were treated with Horseshoe appliance, forward growth of maxilla and counterclockwise rotation of occlusal plane with labioversion of maxillary incisors and linguoversion of mandibular incisors were obtained. Minimum downward and backward rotation of mandible was accepted, so increasing of lower anterior facial height was minimized.

  • PDF

Effects of Horseshoe Expander (Horseshoe Expander의 확장 효과에 관한 연구)

  • Chung, Kyu-Rhim;Park, Young-Guk;Lee, Young-Jun;Kim, Hong-Suk
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.553-563
    • /
    • 2000
  • Horseshoe Expander is one of Slow Maxillary Expansion(SME) which aims to accommodate the contra- lateral expansion and midpalatal suture expansion or the palate. The appliance consists of skeleton type strew embedded in split Horseshoe appliance. It is the objectives of the presentation to manifest the changes in dental & craniofacial components subsequent to the application of Horseshoe Expander. The subjects for this study consisted of 32 patients (mean age : 12.7). frontal, lateral cephalometric headfilm were taken and study casts were fabricated before and after expansion. 24 items were measured, compared preexpansion with postexpansion. Especially, palatal volume was measured by means of 'Hydro-measurement method'. Tooth axis measurement on the dental casts were made with Universal bevel protractor, and Horseshoe Expander group were compared with RME group. This study of changes to maxillary expansion with Horseshoe Expander revealed the following significant results. 1. Triangular-shaped expansion pattern appeared in frontal cephalometric headfilm. 2. Palatal plane, occlusal plane, mandibular plane and upper incisor to FH increased in lateral cephalometrir headfilm. 3. Palatal volume increased significantly. A slight bite opening, reduction of occlusal contact points showed in dental casts. 4. A 2.2:1 ratio of the amount of intermolar width in maxilla(orthodontic movement) to maxillary width (orthopedic movement) was determined. 5. Horseshoe Expander group has less buccal tipping tendency than RME group, by taking high correlation coefficients in the upper second premolar and first molar. It was suggested that Horseshoe Expander showed less orthodontic changes, less buccal tipping tendency. In addition, it was effective in maxillary expansion.

  • PDF

Horseshoe Vortices variation around a Circular Cylinder with Upstream Cavity (상류 캐비티로 인한 실린더 주위의 유동장 변화)

  • Kang, Kyung-Jun;Kim, Dong-Beum;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2625-2630
    • /
    • 2008
  • Horseshoe vortices are formed at the junction of an object immersed in fluid-flow and endwall plate as a result of three-dimensional boundary layer separation. This study shows preliminary results of the kinematics of such horseshoe vortices around a circular cylinder with a cavity (slot) placed upstream to disturb the primary separation line. Through the cavity, no mass flow addition (blowing) or reduction (suction) is applied. The upstream cavity weakens the adverse pressure gradient before the cavity. With the upstream cavity, a single vortex is found to form immediately upstream of the cylinder whereas a typical two vortex system is observed in the absence of the cavity. Furthermore, the strength of the single vortex tends to be reduced, resulting from the interaction with the separated flow convecting directly towards the leading edge of the cylinder.

  • PDF

Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface (자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구)

  • Seo, Hyeong-Joon;Kuk, Keon;Lee, Joon-Sik;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막의 신경전달물질 및 수용체, 뮬러세포 동정)

  • Lee, Jun-Seok;Kwon, Oh-Ju;Jeon, Tae-Heon;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.391-396
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the visual system of the greater horseshoe bat (Rhinolophus ferrumequinum) by location analysis of some major neurotransmitters glutamate, ${\gamma}$-aminobutyric acid (GABA), acetylcholine, and their receptors, and $m{\ddot{u}}ller$ glial cells in retina. Methods: Standard immunocytochemical techniques were used after vibratome section of retinal tissues of adult greater horseshoe bat for this study. Immnoreactions in immunofluorescence images were analyzed using confocal microscope. Results: Anti-glutamate-immunoreactive neurons were mainly localized in the ganglion cell layer (GCL). The majority of anti-GABA-immunoreactive cells distributed in the inner nuclear layer (INL), and GABAA receptors were localized in the inner plexiform layer (IPL). Anti-choline acetyltransferase-immuoreactive cholinergic neurons were mainly located in the INL and GCL, and most of nicotinic acetylcholine receptors were localized in the IPL. The $m{\ddot{u}}ller$ cells in the retina of the greater horseshoe bat stretched theirs range from the GCL to outer nuclear layer (ONL). Conclusions: This study revealed that the retinas of the greater horseshoe bats contain the same major neurotransmitters and receptors, and glial cell in visually functional mammalian retinas. The present results may suggest that the greater horseshoe bats have the functional retinas for visual analysis through the organized retinal neural circuits.

Experimental Analysis of Effect of Unsteadiness of Horseshoe Vortex on Local Pier Scour (국부교각세굴에서 마제형와의 부정류적 특성에 관한 실험적 해석)

  • Lee, Seung Oh;Kim, Hyung-Jun;Cho, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.169-175
    • /
    • 2008
  • The clear-water scour experiments were conducted to shed light on the unsteadiness of the horseshoe vortex around a bridge pier since the fluctuations of velocity components and unsteadiness of the horseshoe vortex can be considered as one of the main factors on local scour. The characteristics of the flow speed and turbulence around a bridge pier was examined using an Acoustic Doppler Velocimeter (ADV) and the flow visualization with kaolin clay particles upstream of a bridge pier. The outcomes of this study on the turbulence characteristics related with scour mechanism were presented with the quadrant analysis, the integral time scales, and the bed shear stresses before and after scouring, respectively. The bed shear stress before scouring was approximately quadruple times higher than that of the equilibriums state. It implies that the unsteadiness of the horseshoe vortex would play a significant role in the initial development of scour depth. Therefore, the bimodal distribution of flow velocity was identified as one of the mechanical properties of the horseshoe vortex and the unsteadiness of horseshoe vortex can be one of the major characteristics to understand the flow sturucture and local pier scour.