• Title/Summary/Keyword: Horizontally

Search Result 1,099, Processing Time 0.036 seconds

In vitro study of microleakage of endodontically treated teeth restored with different adhesive systems and fiber-reinforced posts (다양한 접착시스템을 이용하여 섬유 강화형 포스트로 수복한 치아에서의 미세누출에 관한 연구)

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: While studies have examined microleakage in endodontically treated teeth restored with posts, microleakage among post and adhesive systems remains a concern. This study compared the sealing properties of 3 adhesively luted post systems. Materials and methods: Thirty-six endodontically treated permanent maxillary central incisors were divided into 3 groups: Zirconia-glass fiber, Quartz-glass fiber, Polyethylene fiber posts. Post space was prepared and each post was adhesively luted with 3 systems. The specimens were separately immersed in freshly prepared 2% methylene blue solution for 1 week. The cleaned specimens were then embedded in autopolymerizing acrylic resin. The root portion of tooth were horizontally sectioned into three pieces (apical, middle, and coronal portions). An occlusal view of each section was digitally photographed with a stereomicroscope. The methylene blue-infiltrated surface for each specimen was measured. Dye penetration was estimated as the ratio of the methylene blue-infiltrated surface to the total dentin surface. Results: No significant differences were found among post types. The variables of middle section and 3-stage adhesive produced significant differences in microleakage between the following post pairs: zirconia-glass fiber versus quartz-glass fiber, zirconia-glass fiber versus polyethylene fiber, and quartz-glass fiber versus polyethylene fiber (P<.05). There were significant differences between the apical and coronal sections of each post type, and between apical versus middle sections of quarze-glass fiber and polyethylene fiber posts (P<.05). Conclusion: No significant differences were found among post types. The 3-stage adhesive produced significant differences in microleakage between the following post pairs.

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Nonhydrostatic Effects on Convectively Forced Mesoscale Flows (대류가 유도하는 중규모 흐름에 미치는 비정역학 효과)

  • Woo, Sora;Baik, Jong-Jin;Lee, Hyunho;Han, Ji-Young;Seo, Jaemyeong Mango
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.293-305
    • /
    • 2013
  • Nonhydrostatic effects on convectively forced mesoscale flows in two dimensions are numerically investigated using a nondimensional model. An elevated heating that represents convective heating due to deep cumulus convection is specified in a uniform basic flow with constant stability, and numerical experiments are performed with different values of the nonlinearity factor and nonhydrostaticity factor. The simulation result in a linear system is first compared to the analytic solution. The simulated vertical velocity field is very similar to the analytic one, confirming the high accuracy of nondimensional model's solutions. When the nonhydrostaticity factor is small, alternating regions of upward and downward motion above the heating top appear. On the other hand, when the nonhydrostaticity factor is relatively large, alternating updraft and downdraft cells appear downwind of the main updraft region. These features according to the nonhydrostaticity factor appear in both linear and nonlinear flow systems. The location of the maximum vertical velocity in the main updraft region differs depending on the degrees of nonlinearity and nonhydrostaticity. Using the Taylor-Goldstein equation in a linear, steady-state, invscid system, it is analyzed that evanescent waves exist for a given nonhydrostaticity factor. The critical wavelength of an evanescent wave is given by ${\lambda}_c=2{\pi}{\beta}$, where ${\beta}$ is the nonhydrostaticity factor. Waves whose wavelengths are smaller than the critical wavelength become evanescent. The alternating updraft and downdraft cells are formed by the superposition of evanescent waves and horizontally propagating parts of propagating waves. Simulation results show that the horizontal length of the updraft and downdraft cells is the half of the critical wavelength (${\pi}{\beta}$) in a linear flow system and larger than ${\pi}{\beta}$ in a weakly nonlinear flow system.

Correlation between Angiographic Vasospasm and Clinical Vasospasm following Aneurysmal Subarachnoid Hemorrhage (뇌동맥류 파열에 의한 뇌지주막하 출혈후 혈관 조영상 혈관연축과 임상적 혈관연축의 상관관계)

  • Suh, Dong-Sang;Kim, Bum-Tae;Im, Soo-Bin;Cho, Sung-Jin;Shin, Won-Han;Choi, Soon-Kwan;Byun, Bark-Jang
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.12
    • /
    • pp.1563-1569
    • /
    • 2000
  • Objective : Delayed ischemic neurologic deficit(DIND) is one of the major complications following aneurysmal subarachnoid hemorrhage(SAH). However, the correlation between angiographic vasospasm(AV) and DIND after SAH is not precisely known. The authors investigated the timing, incidence, characteristics of DIND, and analyzed correlation between AV and DIND. Patients and Methods : A series of 126 patients with SAH and performed cerebral angiography which, confirmed anterior circulation aneurysm, admitted to between January 1996 to December 1998, were studied retrospectively. A comparative analysis between group 1(G1) in which AV patients presented with DIND, and group 2(G2) patients did not DIND, were done. AV was graded according to location, distribution and degree. Location of vasospasm was classified as basal type(BT), distal type(DT). BT was involved horizontally and include the bilateral carotid systems, proximal middle cerebral artery(MCA) and proximal anterior cerebral artery(ACA). DT was involved vertically and include the MCA branches as they become vertically or posteriorly oriented and the ACA distal to the anterior communicating artery. BT and DT all defined ether as localized type(LT) or combined type(CT). Distribution of vasospasm was classified as type I, type II and type III. Type I represents the involvement of bilateral carotid systems and bilateral anterior cerebral artery, type II was designed as one carotid system without involving anterior cerebral artery, and type III when only some portions of the anterior cerebral artery were involved, bilaterally. Degree of vasospasm was classified as mild(less than 25%), moderate(between 25-50%), severe(greater than 50%), and those were determined by comparing the caliber of the artery in vasospasm to that of the nearest area of apparently normal vessel. Results : The incidence of AV & DIND was 57/126(45.2%), 29/126(23.0%), and timing of DIND was 9 days(${\pm}4.1$) after initial hemorrhage. As for the location, BT was seen in 12 cases(40.0%), DT 11 cases(36.7%) and CT 7 cases (23.3%), respectively. Where as G1, BT was seen 5 cases(18.5%), DT 5 cases(18.5%) and CT 17 cases(63.0%), respectively in G2. CT AV was more correlated with DIND than LT AV(p<0.05). For distribution, type I was seen in 16 cases(59.2%), type II 4 cases(14.8%), type III 7 cases(25.9%) in G1 where as type I was seen in 7 cases(23.3%), type II 10 cases(33.3%), type III 13(43.3%) in G2. Type I AV was well correlated with DIND unlike to type II or type III(p<0.05). As for the degree, mild was seen in 4 cases(14.8%), moderate 14 cases(51.9%), severe 9 cases (33.3%) in G1, and mild 16 cases(18.5%), moderate 11 cases(36.7%) and severe 3 cases(10.0%) in G2. Moderate to severe type AV was well correlated with DIND(p<0.05). Conclusion : These results indicate that it may be possible to predict DIND according to careful analysis of location, distribution, degree of AV in patients with aneurysmal SAH.

  • PDF

Response of the Growth and Root Development of Shade Landscape Plants by Slit Ventilation Treatment into Indoor Container (실내용기 내 슬릿(Slit)처리가 내음성 조경식물의 생육과 뿌리발달에 미치는 영향)

  • Ju, Jin-Hee;Han, Jung-Hwa
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.105-112
    • /
    • 2009
  • This study has attempted to facilitate various new technologies related to indoor containers and develop a desirable planting environment after investigating the growth (including root growth) of shade-tolerant landscape plants under slit processing, a natural indoor ventilation system. The following results were found: In terms of the shoot growth of Fatsia japonica in a slit container, no distinctive difference was observed in comparison with the control group. However, growth was good when the container 250mm tall or taller. Therefore, it was verified that optical soil depth is more important than slit processing in shoot growth of Fatsia japonica. In Fatsia japonica root length was observed as follows: Control 2(250mm) > Slit 2(250mm) > Control 1(195mm) > Slit 3(360mm) > Control 3(360mm) > Slit 1(195mm). The largest growth was observed in Control 2(250mm), which had no slit processing. In term of root width, this was lower than the initial value in all groups, which means that the root grew vertically, not horizontally. In terms of plant height of Ophiopogon japonicus, a gradual increase was observed in the control group that had no slit processing. No significant growth was detected in the slit system, however. In terms of shoot number, slit containers were generally higher than the control group. In terms of fresh and dry weights, on the contrary, slit containers were mostly lower than the control group. In Ophiopogon japonicus, root length was observed as follows: Slit 2(250mm) > Slit 1(195mm) > Control 2(250mm) > Control 3(360mm) > Slit 3(360mm) > Control 1(195mm). In Ardisia japonica, slit containers were mostly greater than control group in terms of plant height. The greatest plant height was observed at Slit 2(250mm) instead of Slit 1(195mm) and Slit 3(360mm). Except for plant height and shoot number, however, no significant shoot and root growth was observed. Root length was observed as follows: Slit 2(250mm) > Slit 3(360mm) > Control 3(360mm) > Slit 1(195mm) > Control 2(250mm) > Control 1(195mm). Therefore, root length in slit containers was mostly greater than in the control group. The width of root, however, declined in general.

Visual Characteristics of the Busan Port Landscape Viewed from Young-do Island (영도에서 조망하는 부산항 경관의 시각적 특성)

  • Park, Moon-Sook;Kang, Young-Jo;Cho, Seung-Rae;Kang, Hyon-Woo;Cha, Myeong-Sook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.35-44
    • /
    • 2010
  • This study will define the features of the viewpoint that best enables the view of Busan Port from Young-Do. Special focus will be on spatial distribution, the type Busan Port sights that can be experienced from Young-Do, the compositional characteristic of a port landscape and visual characteristic. The results are based on 27 selected viewpoints and are as follows. Firstly, the patterns of the spatial distribution of viewpoints are classified as park, public facility and wayside types. It was found that most viewpoints are located along a wayside. Secondly, the types of Busan Port sights that can be experienced from Young-Do are divided into three kinds: surrounding stand-line type, facing the port and the type of penetrating city. The major type was of penetrating city among the three patterns. The reason for this is that the point of view for Busan Port was changed into a prospect over the sea since city and road sections have been expanding due to the urbanization of Young-Do. Thirdly, the compositional characteristics of the port landscape are divided into three styles: panoramic, corridor, and rooftop. The most frequent type is the rooftop style among the three characteristics. This fact indicates that the picture of Busan Port seen from Young-Do loses continuity of view and that housetops inhibit the sense of distance. Lastly, the visual characteristics of the viewpoint were analyzed. The angles of the declination of the viewpoints are concentrated on the horizontally closed parts. Thirteen points lie between $-3^{\circ}$ and $-1^{\circ}$, and twelve points between $-6^{\circ}$ and $-4^{\circ}$. The visual axes of the depression are two points because sight is interrupted by buildings which are built when the city expands. Two viewpoints for experiencing the optimum landscape of depression should be prepared to ensure continuous preservation of the viewpoints. The sight creates a wide prospect, reaching from 0.2km to 6.4km. It is expected that the results of this study can be used for the landscape plans of port cities including the management and preservation of viewpoints.

Characteristics of Rooting and Community Maintenance of Some Gramineae planted on Urban Stream Bank Slope (도시하천 제방사면에 식재한 몇몇 벼과식물의 활착 및 군락유지 특성)

  • Yang, Hong-Mo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.42-59
    • /
    • 2017
  • To investigate rooting and community forming ability, sod strips of Gramineae such as Miscanthus sacchariflorus (Maxim.) Benth., Miscanthus sinensis var. purpurascens(Andersson) Rendle, Imperata cylindrica var. koenigii(Retz.) Pilg., and Arundinella hirta(Thunb.) Tanaka were planted horizontally at a width of 10~15cm in October 2010 on the bank slope of Kwangju Stream in Korea. Seeds of each species were sown in April 2010 in plastic seedbeds(60cm length ${\times}$ 30cm width ${\times}$ 5cm depth) filled with 4cm of garden soil and grew until October 2010 to form rectangular sod, which then was cut into multiple strips(20cm length ${\times}$ 6cm width ${\times}$ 4cm root depth). Weeds growing on the experiment sites were removed twice a year until those four species had formed a community by 2013. Weeds were not eradicated during 2014 and 2015 to observe whether the community formation can be maintained without weed removal. t-tests on stem numbers and heights in May, July, and September were conducted between 2013 and 2014, and between 2014 and 2015. Stem numbers and heights of the four species in 2014 were significantly decreased(p<0.001) compared with those in 2013 due to weed damage to their growth in 2014. Stem numbers and heights of Miscanthus sacchariflorus(Maxim.) Benth., Miscanthus sinensis var. purpurascens(Andersson) Rendle, Imperata cylindrica var. koenigii(Retz.) Pilg. in 2015 were similar to those in 2014(p>0.05). Stem numbers and heights of Arundinella hirta(Thunb.) Tanaka in 2015, however, were significantly reduced compared with those in 2014(p<0.001) due to weed impact on its growth. After three years of weed removal, a community of each species was formed. Miscanthus sacchariflorus(Maxim.) Benth., Miscanthus sinensis var. purpurascens(Andersson) Rendle, Imperata cylindrica var. koenigii(Retz.) Pilg. were able to establish communities without any further weed removal. Arundinella hirta(Thunb.) Tanaka, however, was not able to maintain its community due to considerable damage to its growth caused by weeds even after three years of weed removal. Miscanthus sacchariflorus(Maxim.) Benth., Miscanthus sinensis var. purpurascens(Andersson) Rendle, Imperata cylindrica var. koenigii(Retz.) Pilg. are more suitable to sod strip plantings on stream bank slopes in terms of the maintenance of community formation without weed eradication. t-test on stem numbers and heights each September during the five year experiment period between sod strip planting and potted plants of the four species were conducted. Stem numbers of strip sod plantings were significantly higher(p<0.001) than those of potted one. Heights of strip sod plantings, however, were significantly lower(p<0.05) than those of the potted samples. Therefore, strip sod planting is more advantageous regarding bank slope erosion protection due to the higher number of stems.

The Cross-sectional Mass Flux Observation at Yeomha Channel, Gyeonggi Bay at Spring Tide During Dry and Flood Season (단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사)

  • Lee, Dong-Hwan;Yoon, Byung-Il;Kim, Jong-Wook;Gu, Bon-Ho;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-25
    • /
    • 2012
  • To calculate the total mass flux that change in dry and flood season in the Yeomha Channel of Gyeonggi Bay, the 13 hour bottom tracking observation was performed from the southern extremity. The value of the total mass flux(Lagrange flux) was calculated as the sum of the Eulerian flux value and stroke drift value and the tidal residual flow was harmonically analyzed through the least-squares method. Moreover, the average during the tidal cycle is essential to calculate the mass flux and the tidal residual flow and there is the need to equate the grid of repeatedly observed data. Nevertheless, due to the great differences in the studied region, the number of vertical grid tends to change according to time and since the horizontal grid differs according to the transport speed of the ship as a characteristic of the bottom tracking observation, differences occur in the horizontal and vertical grid for each hour. Hence, the present study has vertically and horizontally normalized(sigma coordinate) to equate the grid per each hour. When compared to the z-level coordinate system, the Sigma coordinate system was evaluated to have no irrationalities in data analysis with 5% of error. As a result of the analysis, the tidal residual flow displayed the flow pattern of sagging in the both ends in the main waterway direction of dry season. During flood season, it was confirmed that the tidal residual flow was vertical 2-layer flow. As a result of the total mass flux, the ebb properties of 359 cm/s and 261 cm/s were observed during dry and flood season, respectively. The total mass flux was moving the intertidal region between Youngjong-do and Ganghwa-do.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.