• Title/Summary/Keyword: Horizontal transfer

Search Result 785, Processing Time 0.038 seconds

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

Cooling Heat Transfer Characteristics of Carbon Dioxide in a Horizontal and Helically Coiled Tube (수평관과 헬리컬 코일관내 이산화탄소의 냉각 열전달 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.121-126
    • /
    • 2008
  • The cooling heat transfer coefficient of $CO_2$ (R-744) in a horizontal and helically coiled tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, evaporator and gas cooler (test section). The test section consists of a horizontal stainless steel tube and hellically coiled copper tube of 4.57 and 7.75 mm. The experiments were conducted at saturation temperature of 100 to $20^{\circ}C$, and mass flux of 200 to $500kg/m^2s$. The test results showed the variation of the heat transfer coefficient tended to decrease as cooling pressure of $CO_2$ increased. The heat transfer coefficient with respect to mass flux increased as mass flux increased. The experimental results were also compared with the existing correlations for the supercritical heat transfer coefficient, which generally underpredicted the measured data. However, the experimental data showed a relatively good agreement with the correlations of Pitla et al. except for the pseudo critical temperature.

An Experimental study on Heat Transfer Characteristics of Horizontal Liquid Film Driven by Hot Wind (유동고온공기에 의해 유인되는 수평평판 액막류의 열전달에 관한 실험적 연구)

  • Park, J.H.;Park, S.K.;Yoon, S.H.;Oh, C.;Kim, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.83-88
    • /
    • 2002
  • This study is to provide the experimental information and basic data on heat transfer characteristics of horizontal liquid film driven by hot wind. Heat transfer characteristics of the liquid film in the rectangular duct was observed and the change of film temperature was measured. The experiments were carried out for a variety of parameter, such as feed water rate and velocity and temperature of feed air. From the observation and the measurement the general understanding of heat transfer characteristics for liquid film driven by hot wind was provided.

  • PDF

An Experimental Study on the Vertical Vibration Transfer in Horizontal Way according to Shear Wall Building Structures due to Exciting Vibration Forces (전단벽식 건축구조물 수직진동의 수평방향 전달특성에 관한 실험연구)

  • Chun, Ho-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.270-282
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions to near-rooms on the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the impact (heel-drop and hammer) excitation experiments were conducted several times on two building structure. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vertical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs, and are effected the shear wall on the Path of the vibration transfer.

Convective Heat Transfer to Water near the Critical Region in Horizontal Rectangular Ducts (수평 직사각 덕트 내 임계점 부근 물의 대류열전달 특성)

  • Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.477-485
    • /
    • 2012
  • Fluid flow and heat transfer in horizontal ducts are strongly coupled with large changes in thermodynamic and transport properties near the critical region as well as the gravity force. Numerical analysis has been carried out to investigate convective heat transfer in horizontal rectangular ducts for water near the thermodynamic critical point. Convective heat transfer characteristics, including velocity, temperature, and the properties as well as local heat transfer coefficients along the ducts are compared with the effect of proximity on the critical point. When there is flow acceleration because of a density decrease, convective heat transfer characteristics in the ducts show transition behavior between liquid-like and gas-like phases. There is a large variation in the local heat transfer coefficient distributions at the top, side, and bottom surfaces, and close to the pseudocritical temperature, a peak in the heat transfer coefficient distribution resulting from improved turbulent transport is observed. The Nusselt number distribution depends on pressure and duct aspect ratio, while the Nusselt number peak rapidly increases as the pressure approaches the critical pressure. The predicted Nusselt number is also compared with other heat transfer correlations.

Condensation Heat Transfer Characteristics of HCFC - 123 inside Horizontal Smooth Tube (HCFC-123의 수평 평활관내 응축 전열 특성에 관한 연구)

  • 권옥배;오후규;오종택;김성규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.24-32
    • /
    • 1993
  • Experimental data on the heat transfer characteristics of HCFC-123 and CFC-11 during condensation in horizontal smooth tube are presented. The experimental apparatus consisted of a closed working fluid loop, coolant loop, and measuring system. The major components of the working fluid loop made of a refrigerant pump, boiler, superheater, refrigerant flow meter, receiver and test section. The tube-in-tube type test section was made of smooth tube which were constructed form 9.52 mm outer diameter of smooth copper tube with 50 mm outside diameter of PVC tube duct. The ranges of parameter, such as refrigerant mass velocity, coolant flow rate, and quality were 90-325kg/($m^2$.s), 60-360kg/h, 5-95% respectively. Data were obtained under steady state condition for annular flow. As a result of these, the condensation heat transfer coefficients for HCFC-123 were slightly lower than those of CFC-11 from 8% to 15% inside horizontal smooth tube. Furthermore, a new generalized correlation for the heat transfer coefficients of HCFC-123 and CFC-11 during condensation inside horizontal smooth tube is proposed.

  • PDF

Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube (R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향)

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF

Filmwise Condensation of Freon Vapor Including Air on a Horizontal Tube (공기를 함유한 프레온 증기의 수평관 외부에서의 막응축)

  • Kim, K.H.;Ko, H.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1995
  • A theoretical model for film condensation of a vapor including a relatively lighter noncondensable gas on a horizontal tube has been formulated on the basis of the conservation laws and other fundamental physical principles. The model is applied to the prediction of the condensation heat transfer characteristics for the Freon vapor in the presence of air on a horizontal tube. Calculated results for the mean heat transfer coefficient, which is shown to depend strongly on the bulk concentration of air, are in good agreement with the available experimental results for a range of operating conditions. The distributions of physical quantities along the surface of tube are also calculated, such as the boundary layer thickness and local heat transfer coefficient. The present model is readily reduced to the Nusselt model as the bulk concentration of air decreases to zero. Therefore, the transition from the condensation of pure vapor to that of vapor-air mixture occurs continuously not abruptly.

  • PDF

Measurement of Single Phase and Condensation Heat Transfer Coefficients of Ammonia in a Horizontal Tube (암모니아의 수평관내 단상 및 응축 열전달계수의 측정)

  • 백영진;장영수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.561-569
    • /
    • 2000
  • Single phase and condensation heat transfer characteristics of ammonia in a horizontal tube have been investigated experimentally The horizontal test section is composed of smooth SUS316 tube for refrigerant flow, surrounding annulus for water flow, and temperature and Pressure measuring sensors. For single phase test, subcooled ammonia mass flux was varied from 320 to 501 kg/mrs and temperature was varied from 18 to $47^{\circ}C$. For condensation test, mass flux and saturation temperature were varied from 86 to 128 kg/$m^2$s and 34 to $47^{\circ}C$, respectively. The equations of Gnielinski Soliman et al., Traviss et at., Cavallini and Zecchin, Shah, Chen et al., Tandon et al., and Chilli and Anand were compared with the experimental data. New correlations are proposed based on the experimental results and the absolute mean deviation of the experimental data becomes 1.0% for single phase test and 4.9% for condensation test.

  • PDF

Experimental Study on Heat and Mass Transfer Characteristics in bundles of horizontal absorption tubes (수평관군 흡수기의 열 및 물질 전달특성에 관한 실험적 연구)

  • 설원실;정용욱;문춘근;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.113-120
    • /
    • 2000
  • On the absorber of absorption chiller/heater, LiBr solution at high concentration is sprinkled on a bundle of horizontal tube cooled by cooling water. In this case, the conditions of LiBr solution and cooling water have an influence on heat/mass transfer coefficient in this system. Therefor it is important to find optimal operation conditions of absorption chiller/heater to save energy. Heat and mass transfer coefficient increased with the increase of solution flow rate, and also heat and mass transfer rate increased but overall heat and mass transfer coefficient decreased by increasing the solution concentration within the experimental range. The superheating of the solution resulted in superior heat transfer character to a state of equilibrium from the point of heat flux and overall heat transfer coefficient.

  • PDF