• Title/Summary/Keyword: Horizontal channel

Search Result 265, Processing Time 0.021 seconds

A Finite-difference Modeling of Love Channel Waves in Transversely Isotropic Medium (유한차분식을 이용한 Transverse 이방성(異方性) 매질내 Love채널파동 연구)

  • Cho, Dong-Heng;Lee, Sung-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.281-287
    • /
    • 1994
  • The present paper deals with numerical modeling of Love channel waves in transversely isotropic elastic medium. First, an explicit finite-difference scheme of second order approximation is formulated with the wave equation of SH particle displacement in transversely isotropic medium. Since it is a heterogeneous formulation, it should enable efficient modeling of complex model structures without additional treatment of the internal boundary matching. With a model of isotropic coal seam embedded in high velocity host rock, seismograms are synthesized and tutn out to be essentially identical with published ones of Korn and $St{\ddot{o}}ckl$. Next, anisotropic coal seams are investigated. It is found that the horizontal velocity of the seam appears to play a major role of determining the group velocity of Love channel waves. The group velocity increases with the increase of the horizontal velocity or vice versa. However, further study will be needed to exploit fully Love channel waves for the determination of lithology, stratification, fracture in sedimentary rocks, for instance, for hydrocarbon exploration and development.

  • PDF

Approaching Near-Capacity on a Multi-Antenna Channel using Successive Decoding and Interference Cancellation Receivers

  • Sellathurai, Mathini;Guinand, Paul;Lodge, John
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, we address the problem of designing multirate codes for a multiple-input and multiple-output (MIMO) system by restricting the receiver to be a successive decoding and interference cancellation type, when each of the antennas is encoded independently. Furthermore, it is assumed that the receiver knows the instantaneous fading channel states but the transmitter does not have access to them. It is well known that, in theory, minimummean- square error (MMSE) based successive decoding of multiple access (in multi-user communications) and MIMO channels achieves the total channel capacity. However, for this scheme to perform optimally, the optimal rates of each antenna (per-antenna rates) must be known at the transmitter. We show that the optimal per-antenna rates at the transmitter can be estimated using only the statistical characteristics of the MIMO channel in time-varying Rayleigh MIMO channel environments. Based on the results, multirate codes are designed using punctured turbo codes for a horizontal codedMIMOsystem. Simulation results show performances within about one to two dBs of MIMO channel capacity.

An Analytical Study on the Heat Transfer Characteristics of MF Evaporation Tubes Attached with a Fin (핀이 부착된 MF증발관의 열전달 특성에 대한 해석적 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.48-56
    • /
    • 2021
  • In this study, the heat transfer process around the finned channel tubes is numerically examined. Serially arranged tubes of an evaporator were used for heat exchange. The numerical analysis results confirmed that the vortex generated at the rear of the channel pipe was caused by the fin. Furthermore, it was also confirmed that the temperature difference was large between the inlet and outlet ends of the fin. The temperature of the location where the fin was attached to the channel pipe was found to be close to the surface temperature of the channel wall. However, the temperature rose rapidly closer to the ambient air temperature of 350 K towards the fin end, located at a distance of 0.035 m; it was found to have a significant influence on the heat transfer around the fin-attached channel tube. The wider the vertical flow path, the lower the total heat transfer coefficient. However, the overall heat transfer coefficient increased as the horizontal flow path narrowed. The increment is attributed to an increase in the heat transfer amount due to increased heat transfer surface.

Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media (다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

An Experimental Study on the Two-Phase Flow Pressure Drop Within Horizontal Rectangular Channels with Small Gap Heights (미세 수평 사각유로에서의 2상 유동 압력강하에 관한 실험적 연구)

  • Lee, Han Ju;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.637-645
    • /
    • 1999
  • Horizontal two-phase flow pressure drop within rectangular channels with small gap heights have been examined experimentally. The gap heights range from 0.4mm to 4mm corresponding to aspect ratios(the channel height divided by the width) from 0.02 to 0.2. Water and air were used as the test fluids with the superficial velocity ranges being 0.03-2.39m/s and 0.05-18.7m/s, respectively. The experimental results In rectangular channels were compared with the Lockhart-Martinelli correlation, which are widely used for conventional round tube. The Lockhart-Martinelli correlation turned out to be Inappropriate to represent the present experimental data. In this respect, considering the aspect ratio and gap-height effects, an empirical correlation on two-phase flow pressure drop was proposed. The proposed correlation successfully covers the bubbly, plug, slug and annular flow regimes.

Automatic Placement and Routing System for Gate Array (게이트 어레이의 자동 배치, 배선 시스템)

  • 이건배;정정화
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.572-579
    • /
    • 1988
  • In this paper, a system of automatic placement and routing for gate array layout design is proposed. In the placement stage, the circuit is partitioned and using the concept of min-cut slicing, and each partitioned module is placed, so that the routing density over the entire chip be uniformized and the total wiring length be minimized. In the global routing stage, the concept of the probabilistic routing density is introduced to unify the wiring congestions in each channel. In the detailed routing stage, the multi-terminal nets are partitioned into the two-terminal nets. The ordered channel graph is proposed which implies the vertical and the horizontal constranint graphs simultaneously. And using the ordered channel graph, the proposed routing algorithm assigns the signal nets to the tracks. Also the proposed placement and routing algorithms are implimented on IBM/PC-AT to construct PC-level gate array layout system.

  • PDF

Gaussian Apodization Technique in Holographic Demultiplexer Based on Photopolymer

  • Do, Duc-Dung;An, Jun-Won;Kim, Nam;Lee, Kwon-Yeon
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.269-274
    • /
    • 2003
  • In this paper, a Gaussian apodization technique applied to a transmission volume hologram for holographic demultiplexer is proposed. The Gaussian apodized grating of 15 mm ${\times}$ 11mm size, $38{\mu}m$ thickness and 3.2 mm horizontal standard deviation of the Gaussian index modulation profile was fabricated. A 22-channel demultiplexer based on that grating has been optically demonstrated. The channel spacing, the interchannel cross-talk level and the channel uniformity of 0.8 nm, -30 dB and 1.5 dB, respectively, were obtained.

A Study on a New Global Router Using Rerouting (재배선을 이용한 전역 배선기에 관한 연구)

  • 박은호;신현철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.10
    • /
    • pp.49-56
    • /
    • 1992
  • A new global routing algorithm which dynamically adjusts its cost parameters depending on the given routing poroblem to find a near optimum solution has been developed. The proposed algorithm efficiently performs global routing on general area in which all the pin positions are given. This algorithm is composed of two phases`In the first phase, it routes each net by searching a minimum cost path while ignoring the channel capacity. In the second iterative phase, it rips up nets which pass the channel at which the horizontal or vertical routing density exceeds the capacity and then it reroutes them using a modified set of cost parameters. Applying the above phases, paths for nets are found such that routing density doesn't exceed the capacity in each channel and that nets are routed with minimum cost. Experimental results for several benchmark examples including difficult-4, difficult-8, difficult-16, Primary1 and Primary2 show that our method generates better results than other published ones.

  • PDF

A Numerical Analysis on the Natural Convect ion of the Square Channel inner from the Horizontal Plate with Protruding Heat Source (사각 채널 내에서 열원이 부착된 수평 평판에서 자연대류의 수치해석)

  • Kim Byung-Chul;Ju Dong-IN
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.487-490
    • /
    • 2002
  • The real chip and similarity model were used to investigate the thermal behavior and velocity distribution of air from the heat source with the location and the amount of heat experimentally and numerically, and compared. The heat generated in the block is not cooled by convection and show the high temperature by the stagnation of heat flow. After maintaining the high temperature of block by the natural convection, the sudden drop of temperature with the air flow was shown in the channel but the decreasing rate was small with the time. The inward block was effected by infinitesimal air flow generated between block and channel and outward block was effected by the entry condition.

  • PDF