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In this paper, a Gaussian apodization technique applied to a transmission volume hologram for
holographic demultiplexer is proposed. The Gaussian apodized grating of 15 mm x 11 mm size, 38
pm thickness and 3.2 mm horizontal standard deviation of the Gaussian index modulation profile
was fabricated. A 22-channel demultiplexer based on that grating has been optically demonstrated.
The channel spacing, the interchannel cross-talk level and the channel uniformity of 0.8 nm, -30 dB

and 1.5 dB, respectively, were obtained.
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I. INTRODUCTION

In recent years, there have been some advances in
research on dense wavelength division multiplexing
(DWDM) systems. In a DWDM system, an optical
demultiplexer plays a key role. Its main function is to
receive from a fiber a beam consisting of multiple opti-
cal wavelengths and separate it into its frequency com-
ponents, which are coupled in individual fibers, one for
each frequency [1]. When the number of channels in
a given wavelength range increases or channel spac-
ing is narrower (0.4 nm), the interchannel cross-talk,
which limits the high performance of a whole system,
is more important. According to the International
Telecommunication Union-Telecommunication Stan-
dardization Sector (ITU-T) recommendations, the in-
terchannel cross-talk level should be smaller than -30
dB.

Now there are several different devices which can
be used as optical demultiplexers. Those are dielec-
tric thin film filters (TFFs), arrayed waveguide grat-
ings (AWGs), fiber Bragg gratings (FBG) and diffrac-
tion gratings. Recently, a holographic demultiplexer
based on a photopolymer volume grating that diffracts
all optical channels into a single order and separates

them among their wavelengths has been proposed [2].
It is possible to get high diffraction efficiency due to
the volume phase nature of the grating. However, in
this device, the cross-talk among channels is still high
and does not satisfy the ITU-T recommendations. To
realize a optical demultiplexer based on this scheme,
it is necessary to improve the interchannel cross-talk
parameter.

In other research fields, such as FBG and holo-
graphic memory based on crystals, there have been
some attempts to suppress the side lobes of the out-
put spectrum [3,4]. In these cases, the apodization
technique, which the modulating amplitude is varied
along the fiber axis or optical axis, was used. This
method provides a great solution to reduce the cross-
talk level through narrowing wavelength selectivity, as
well as angular selectivity of these devices.

In this paper, we present an apodization method
that is for the first time applied to a transmission vol-
ume hologram to reduce the interchannel cross-talk
level in the volume holographic demultiplexer. We
first summarize the basic theory of apodization to an-
alyze the capability of using it in the demultiplexing
scheme. This is followed by the presentation of the
fabrication technique. The diffraction profiles are then
characterized. The spectra are finally presented to
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show the great side-lobe suppression of the apodized
grating compared with a uniform one.

11. THEORY

In order to separate different spectral DWDM chan-
nels, it is convenient to use the spatial filtering mech-
anism inherent to any diffraction grating. A polychro-
matic plane beam of multi wavelengths A,,, where 7 is
an index from 1 to the total number of wavelengths,
is incident on an un-slanted transmission volume grat-
ing at angle ; which is defined in Fig. 1. The desired
diffraction angle 8,,, with respect to wavelength A,
satisfying the constructive interference condition [5] is
given by

Ag(sin6; +sin o) = Ay (1)

where A, is the grating period. For the volume grat-
ing, the highest diffraction efficiency is obtained when
Bragg’s condition is satisfied, that is 8; = 8,,.

Therefore, the light dispersion due to wavelength
detuning AX is simply derived from Eq. (1), which
gives

_ AX
- Agcosb,,

A0 (2)

Thus, for a given wavelength detuning, or a chan-
nel spacing, and for a fixed configuration, the grating
period decides the amount of dispersion of diffracted
beam in the incident plane.

—

G(R) - |6(R) + %5(1{ -

where kx, ky, kz are the components of the spec-
tral grating vector K projected on the z, y, z axes,
respectively. From Eq. (4), it is obvious that a finite-
size grating can be regarded as a superposition of a
multitude of infinite-size gratings, each having a dif-
ferent K vector and a respective amplitude that is the
coefficient of the Fourier transformation. The result of
the convolution is a blurring of the grating-vector tip
into a continuum of grating vectors surrounding the
ideal location of the tip of the grating vector for an
infinite grating. This blurring operation then leads to
the possibility that the k-vector triangle required by
the Bragg effect can be closed in many different ways,
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FIG. 1. Dispersion of multi-wavelengths by a transmis-
sion volume grating.

A volume grating in practice always has a finite size
confined spatially by the recording medium. To un-
derstand the consequences of the finite grating size,
three-dimensional Fourier analysis is used. Assuming
that a volume phase grating has a local refractive in-
dex described as follows [6]

x

- Yy z
g() =1 +mcos(K, -7+ QSO)]rectYrect?rect—Z—

3)

where K, is the grating vector, K, = 2w/A,, ¢ is
an unimportant spatial phase of the grating, m is the
modulation of the grating, 7'is the position vector with
components (z, y, z) and X, Y, Z are the size of the
grating in three rectangular coordinate directions.

The grating-vector spectrum of the above spatially
bounded fringe is easily found to be [6]

Yk Zkg

. Y .
4
sinc———sine— - (4)

perhaps at some cost in terms of the strength of the
diffracted wave.

From the Eq. (4), it is seen that in one dimension,
the width of grating-vector spectrum is large as its re-
spective size is small and vice versa. For the case of
transmission gratings based on photopolymer, the ma-
terial is very much thinner than their lateral extent.
Therefore, the grating-vector cloud is extended in the
direction normal to the recording surface. This ge-
ometry is quite tolerant to changes of the wavelength
of the input beam, as shown in Fig. 2(a). In other
words, transmission gratings have a wide wavelength
selectivity that was approximately determined [7] by
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FIG. 2. a) Grating-vector clouds and their effect on closing the k-vector triangle. b) Vector diagram of a bandwidth of

a channel.

% = % cot (5)
where 6 is an incident angle inside the material.

It is consequently seen that a thinner grating, as
long as it is considered to be a volume one, will sup-
port more channels for a given channel spacing. Be-
cause the output beam is just diffracted along this
horizontal direction, the effect of finite grating size on
only the y-axis will be dealt with. As shown in Fig.
2(b), there is not only a grating vector Kg but also
other extending ones that combine with the light of
different wavelengths existing in the input beam to
satisfy Bragg’s condition. The light of different wave-
lengths that diffracted in the same direction makes
up the bandwidth of an output channel and the inter-
channel cross-talk. In the cases of holographic mem-
ory or demultiplexing schemes using multi gratings,
this bandwidth and cross-talk are much smaller than
those made by the wavelength selectivity and angular
selectivity, so they are often ignored. Nevertheless, in
our scheme, supported channels are contained in the
range of the wavelength selectivity and are overlapped
by each other due to the effect of finite extent grat-
ing size. When the channel spacing is reduced, this
overlap is the important point.

Quantitatively, it is pointed out by H. Kogelnik in
the coupled wave theory [7] that the diffraction efhi-
ciency of the diffraction beam for an un-slanted loss-

Although the second convolution results in a wider
main lobe, it also suppresses side lobes of the spec-
trum of the output channels. The amount of suppres-

less dielectric transmission grating is as follows

_sin? &2 112 nG(K)Z e= T2
= 14+€2/v2 7 Aycosf’ ° 2cosf

When the mismatch I' to the Bragg’s condition is very
small, the spectrum of a channel is closely similar to
the sinc? function. It is evident that the side lobes of
the spectrum are large. These lead to a high cross-talk
level between the adjacent channels. If the uniform
function of the modulating amplitude is replaced by
one that vanishes smoothly at the edges of the grat-
ing, the slowly decaying side lobes of the sinc? curve
are eliminated, i.e. the cross-talk will be significantly
reduced.

In this paper, a Gaussian function is chosen as an
apodization profile because a Gaussian intensity dis-
tribution of laser beam can be obtained easily by a
laser source. If the refractive index profile for a grat-
ing modulated in the y direction is given by

n(y) = no + An(y) cos(Ky - y) (7)
and  An(y) = Angexp (—%) (8)

where ng is the average refractive index of the holo-
graphic material, Ang is the peak index modulation,
the grating-vector spectrum is obtained to be

2k2 Y
& Angexp | — 7 % & Ysine ky
2 2w

sion depends on the ratio of the standard deviation
o to the size of the grating in the apodized direction.
The output spectra can be simulated by using Eq. (4)
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FIG. 3. Output spectral simulation for uniform and
Gaussian apodized gratings.

and (9) to solve directly the differential equations of
the coupled wave theory [7] for a uniform and Gaus-
sian apodized grating, respectively. Fig. 3 shows the
results of the simulation to compare the side-lobe sup-
pression. The uniform grating has the horizontal size
of 10 mm while that of the Gaussian grating is 16
mm. The standard deviation of the Gaussian profile
is 3.2 mm. It is shown that both cases have same 3-dB
bandwidth but the side-lobe suppression of 30 dB is
achieved for the apodized grating.

III. FABRICATION OF GAUSSIAN APODIZED
GRATING

According to the above analyses, a Gaussian
apodized grating was fabricated on Du Pont’s HRF-
150-38 photopolymer. This 38-um-thick photopoly-
mer has a long shelf life, wide spectral sensitivity, vol-
ume phase holographic properties, and overall ease of
use [8].

The optical system for recording and checking the
grating is shown in Fig. 4. The Gaussian laser beam
at 532 nm from a CW Nd-YAG source was expanded
by a spatial filter and a lens. As mentioned above, the
cross-talk is created in only one direction, so it is just
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FIG. 4. Experimental system for recording and measur-
ing grating.

required to have a grating of Gaussian-modulated dis-
tribution in the horizontal direction but uniform in
others in order to improve the overall diffraction effi-
ciency. Therefore, the expanded Gaussian beam was
once more enlarged in the vertical direction by a cou-
ple of cylindrical lenses. A beam splitter divided such
laser beam into two beams with the ratio of 1:1. The
grating was created by exposing the photopolymer
for around 135 s under the interference of these two
beams, each of which had the intensity in the center
of 3.0 mW/cm?. Then, the grating was fixed by UV
exposure before it could be used as a demultiplexer.

In our experiment, the half angle 6, between
the recording beams outside the material was 15° ,
thus, the grating period Ay of 1.028 pm was cre-
ated. Accordingly, the incident angle 8; at the center-
wavelength of 1550 nm was 48.945°. In these con-
ditions, the wavelength selectivity or the operating
bandwidth obtained by Eq. (5) was 73.043 nm.

To check the profile of recorded gratings, we used
the 633 nm He-Ne laser beam as a probe. After be-
ing created, the grating was horizontally shifted over
the probe beam by using a linear stage. The mea-
sured data was collected automatically by a computer.
When the probe beam reached the grating, it had to
have a very small spot size to distinguish any fast vari-
ation of the modulating amplitude along the apodized
direction. Therefore, a focused Gaussian beam was
employed.

Fig. 5 shows the results of a Gaussian apodized
grating of 16 mm width created and measured by the
above fabricating process. A Gaussian function ex-
pressed by Eq. (8) was used to fit to the measured
data. The peak of the modulation amplitude and the
standard deviation were 0.0055 and 3.18 mm, respec-
tively. Thus, the standard deviation of the modula-
tion amplitude profile was approximated to 3.2 mm.
The little mismatch between the fitting line and the
experimental data is explained in that the intensity
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FIG. 5. Modulation amplitude as a function of position
for an apodized grating.
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response of the photopolymer is not linear at low
recording intensity. This possibly affects the result
of output spectral response. However, it would be
overcome if another material of higher sensitivity were
used.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results of apply-
ing Gaussian apodization into a transmission volume
grating for a holographic demultiplexer are presented.
The structure of a demultiplexer consists of a collimat-
ing lens, a volume holographic grating, and an output
lens, as shown in Fig. 6. The uniform light created
by the collimating lens illuminates the grating and is
diffracted at the angle of 48.945°. The output lens
that has focal length F of 200 mm focuses channels
into an output-fiber array. Nevertheless, for experi-
mental convenience, in our configuration to measure
the performance characteristics, instead of a fiber ar-
ray we used only a single mode fiber that is moved
along the focal plane and is controlled by a motorized
fiber alignment unit. In addition, to demonstrate the
high side-lobe suppression of the apodized grating, we
have also made another uniform grating which has the
same grating period as that of the Gaussian one. In
the demultiplexer scheme, the diameter D of the read-
out beam was 6.5 mm for the uniform grating while it
was 10.5 mm for the others.

Figs. 7(a) and (b) show the spectra of two output
channels when using the uniform and the apodized
grating, respectively. Each channel had 3-dB band-
width of 0.18 nm and the channel spacing was 0.8 nm.
These figures show the highly side-lobe suppression of
about 20 dB consequently leading to the interchannel
cross-talk reduction of 15 dB. However, the main-lobe
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FIG. 6. Structure of a demultiplexer based on the pho-
topolymer volume grating.
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FIG. 7. The spectra of two output channels to compare
the cross-talk reduction: a) Uniform grating, b) Gaussian
apodized grating.

width of the spectral responses obtained experimen-
tally was larger than that of the simulation results. It
is obvious that the factor affecting our result must be
the spot size of the focused beam because the Fraun-
hofer diffraction was not taken into account in the
simulation, whereas the spot size of one channel in
the experiment was about 47.7 pm. It is necessary to
be matched with the fiber’s core diameter to reduce
the main-lobe width and increase the fiber-coupling
efficiency. Therefore, other focal lengths of the out-
put lens should be chosen properly to obtain better
experimental data. Moreover, it was difficult to make
the perfect uniform wave during the process of doing
the experiment with the infrared light. This might
also explain the difference of the main-lobe widths
between theoretical and experimental results. Oth-
erwise, coupling the light to the fiber also leads to
asymmetric output spectra, as shown in Fig. 7. How-
ever, this effect is not much and can be eliminated if
an exact experimental setup is carefully designed and
constructed.

In our experiment, we have also tested the perfor-
mance of the apodized grating working as a 22-channel
demultiplexer. The channel characteristics have been
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FIG. 8. Spectral response of 22-channel demultiplexer
with 0.8 nm channel spacing.

measured in the flat region (1540-1557 nm) of the
EDFA source to ensure the power uniformity over all
test channels. The spectra of the output channels are
shown in Fig. 8. The bandwidth of a channel was 0.18
nm. Two adjacent fibers were separated by 245-pym
horizontal distance providing the wavelength spacing
between each channel of 0.8 nm. Especially, the inter-
channel cross-talk level was less than -30 dB. Besides,
for all 22 channels, the interchannel uniformity of 1.5
dB was also obtained.

A drawback of applying the apodization technique
to the transmission grating is an increase in the in-
sertion loss because of its low diffraction efficiency at
the outer parts. This partly rises from mismatching
between the focused beam’s spot size and the core di-
ameter of output fiber. However, it can be improved
when the readout beam size and focal length of the
output lens are optimally selected. Commercially, to
realize the demultiplexer based on volume apodized
grating, the number of channels should be made higher
by reducing the channel spacing to 0.4 nm or less. It
is feasible and is currently being investigated more to
reach that requirement.

V. CONCLUSIONS

In this paper, we have investigated the capability
of applying apodization to the transmission grating

for a demultiplexer in an optical communication sys-
tem. This approach provides a high potential for
suppressing the side lobes of the output spectra of
a channel. By using the Gaussian function as the
apodizing profile, we could reduce the cross-talk level
of 0.8-nm-spaced channels down to -35 dB. In addi-
tion, we also have optically demonstrated a 22-channel
demultiplexer of 1.5-dB interchannel uniformity, 0.8-
nm channel spacing, and less than -30-dB interchannel
cross-talk level.

As we have seen, the demultiplexer based on vol-
ume holographic apodized grating can perform better
if we choose properly parameters such as a ratio of a
standard deviation of a Gaussian function to a grat-
ing size that determines the readout beam side, and
the output lens. By means of further researching on
apodization technique, it is believed that the demul-
tiplexer based on this scheme will be improved and
realized to meet the needs of both existing and future
DWDM systems.

*Corresponding author : Jwahn@osp.chungbuk.ac.kr.
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