• Title/Summary/Keyword: Horizontal Resolution

Search Result 332, Processing Time 0.027 seconds

A Development of 3-D Resolution Algorithm for Aircraft Collision Avoidance

  • Kim, Youngrae;Lee, Sangchul;Lee, Keumjin;Kang, Ja-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.272-281
    • /
    • 2013
  • Traffic Collision Avoidance System (TCAS) is designed to enhance safety in aircraft operations, by reducing the incidences of mid-air collision between aircraft. The current version of TCAS provides only vertical resolution advisory to the pilots, if an aircraft's collision with another is predicted to be imminent, while efforts to include horizontal resolution advisory have been made, as well. This paper introduces a collision resolution algorithm, which includes both vertical and horizontal avoidance maneuvers of aircraft. Also, the paper compares between the performance of the proposed algorithm and that of algorithms with only vertical or horizontal avoidance maneuver of aircraft.

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall (적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향)

  • Lee, Jae-Bok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

Composition of Fine Mesh Model for Explication of Mesoscale Wind Field (중규모 바람장 해석을 위한 Fine Mesh Model의 구성)

  • 이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.159-168
    • /
    • 1995
  • To predict reasonably the movement and the concentration of the pollutants in the coastal area. A simulation model should be prepared considering detail topography with land-sea and the urban effects, and the resolution near the source. The explicit method can not be applied due to the instability of the numerical calculation in high horizontal-grid resolution, while the ADI scheme satisfied with the high horizontal grid resolution and can be used in the fine mesh system which shows the detail topography, atmospheric flow The ADI method which studied the high horizontal grid resolution was excellent. The two dimensional model used in the study using ADI method is proved as a reasonable model to predict the wind field in any small scale area including mountainous coastal urban area.

  • PDF

Effects of Network Density on Gridded Horizontal Distribution of Meteorological Variables in the Seoul Metropolitan Area (관측망 밀도가 기상 자료의 격자형 수평 분포에 미치는 영향)

  • Kang, Minsoo;Park, Moon-Soo;Chae, Jung-Hoon;Min, Jae-Sik;Chung, Boo Yeon;Han, Seong Eui
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.183-196
    • /
    • 2019
  • High-quality and high-resolution meteorological information is essential to reduce damages due to disastrous weather phenomena such as flash flood, strong wind, and heat/cold waves. There are many meteorological observation stations operated by Korea Meteorological Administration (KMA) in Seoul Metropolitan Area (SMA). Nonetheless, they are still not enough to represent small-scale weather phenomena like convective storm cells due to its poor resolution, especially over urban areas with high-rise buildings and complex land use. In this study, feasibilities to use additional pre-existing networks (e.g., operated by local government and private company) are tested by investigating the effects of network density on the gridded horizontal distribution of two meteorological variables (temperature and precipitation). Two heat wave event days and two precipitation events are chosen, respectively. And the automatic weather station (AWS) networks operated by KMA, local-government, and SKTechX in Incheon area are used. It is found that as network density increases, correlation coefficients between the interpolated values with a horizontal resolution of 350 m and observed data also become large. The range of correlation coefficients with respect to the network density shows large in nighttime rather than in daytime for temperature. While, the range does not depend on the time of day, but on the precipitation type and horizontal distribution of convection cells. This study suggests that temperature and precipitation sensors should be added at points with large horizontal inhomogeneity of land use or topography to represent the horizontal features with a resolution higher than 350 m.

Impact of Urban Canopy and High Horizontal Resolution on Summer Convective Rainfall in Urban Area: A case Study of Rainfall Events on 16 August 2015 (도시 캐노피와 수평 고해상도가 여름철 대류성 도시 강수에 미치는 영향: 2015년 8월 16일 서울 강수 사례 분석)

  • Lee, Young-Hee;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.141-158
    • /
    • 2016
  • The objective of this study is to examine the impact of urban canopy and the horizontal resolution on simulated meteorological variables such as 10-m wind speed, 2-m temperature and precipitation using WRF model for a local, convective rainfall case. We performed four sensitivity tests by varying the use of urban canopy model (UCM) and the horizontal resolution, then compared the model results with observations of AWS network. The focus of our study is over the Seoul metropolitan area for a convective rainfall that occurred on 16 August 16 2015. The analysis shows that mean diurnal variation of temperature is better simulated by the model runs with UCM before the convective rainfall. However, after rainfall, model shows significant difference in air temperature among sensitivity tests depending on the simulated rainfall amount. The rainfall amount is significantly underestimated in 0.5 km resolution model run compared to 1.5 km resolution, particularly over the urban areas. This is due to earlier occurrence of light rainfall in 0.5 km resolution model. Earlier light rainfall in the afternoon eliminates convective instability significantly, which prevents occurrence of rainfall later in the evening. The use of UCM results in a higher maximum rainfall in the domain, which is due to higher temperature in model runs with urban canopy. Earlier occurrence of rainfall in 0.5 km resolution model is related to rapid growth of PBL. Enhanced mixing and higher temperature result in rapid growth of PBL, which provides more favorable conditions for convection in the 0.5 km resolution run with urban canopy. All sensitivity tests show dry bias, which also contributes to the occurrence of light precipitation throughout the simulation period.

Application of Vertical Grid-nesting to the Tropical Cyclone Track and Intensity Forecast

  • Kim, Hyeon-Ju;Cheong, Hyeong-Bin;Lee, Chung-Hui
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.382-391
    • /
    • 2019
  • The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.

Impact of Horizontal Resolution of Regional Climate Model on Precipitation Simulation over the Korean Peninsula (지역 기후 모형을 이용한 한반도 강수 모의에서 수평 해상도의 영향)

  • Lee, Young-Ho;Cha, Dong-Hyun;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.387-395
    • /
    • 2008
  • The impact of horizontal resolution on a regional climate model was investigated by simulating precipitation over the Korean Peninsula. As a regional climate model, the SNURCM(Seoul National University Regional Climate Model) has 21 sigma layers and includes the NCAR CLM(National Center for Atmospheric Research Community Land Model) for land-surface model, the Grell scheme for cumulus convection, the Simple Ice scheme for explicit moisture, and the MRF(Medium-Range Forecast) scheme for PBL(Planetary Boundary Layer) processing. The SNURCM was performed with 20 km resolution for Korea and 60 km resolution for East Asia during a 20-year period (1980-1999). Although the SNURCM systematically underestimated precipitation over the Korean Peninsula, the increase of model resolution simulated more precipitation in the southern region of the Korean Peninsula, and a more accurate distribution of precipitation by reflecting the effect of topography. The increase of precipitation was produced by more detailed terrain data which has a 10 minute terrain in the 20 km resolution model compared to the 30 minute terrain in the 60 km resolution model. The increase in model resolution and more detailed terrain data played an important role in generating more precipitation over the Korean Peninsula. While the high resolution model with the same terrain data resulted in increasing of precipitation over the Korean Peninsula including the adjoining sea, the difference of the terrain data resolution only influenced the precipitation distribution of the mountainous area by increasing the amount of non-convective rain. In conclusion, the regional climate model (SNURCM) with higher resolution simulated more precipitation over the Korean Peninsula by reducing the systematic underestimation of precipitation over the Korean Peninsula.

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration (기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증)

  • Kim, SeHyun;Kim, Hyun Mee;Kay, Jun Kyung;Lee, Seung-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

Implementation of Spatial Downscaling Method Based on Gradient and Inverse Distance Squared (GIDS) for High-Resolution Numerical Weather Prediction Data (고해상도 수치예측자료 생산을 위한 경도-역거리 제곱법(GIDS) 기반의 공간 규모 상세화 기법 활용)

  • Yang, Ah-Ryeon;Oh, Su-Bin;Kim, Joowan;Lee, Seung-Woo;Kim, Chun-Ji;Park, Soohyun
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • In this study, we examined a spatial downscaling method based on Gradient and Inverse Distance Squared (GIDS) weighting to produce high-resolution grid data from a numerical weather prediction model over Korean Peninsula with complex terrain. The GIDS is a simple and effective geostatistical downscaling method using horizontal distance gradients and an elevation. The predicted meteorological variables (e.g., temperature and 3-hr accumulated rainfall amount) from the Limited-area ENsemble prediction System (LENS; horizontal grid spacing of 3 km) are used for the GIDS to produce a higher horizontal resolution (1.5 km) data set. The obtained results were compared to those from the bilinear interpolation. The GIDS effectively produced high-resolution gridded data for temperature with the continuous spatial distribution and high dependence on topography. The results showed a better agreement with the observation by increasing a searching radius from 10 to 30 km. However, the GIDS showed relatively lower performance for the precipitation variable. Although the GIDS has a significant efficiency in producing a higher resolution gridded temperature data, it requires further study to be applied for rainfall events.

Quality Evaluation of Ultrasonographic Equipment Using an ATS-539 Multipurpose Phantom in Veterinary Medicine

  • Cho, Young-kwon;Lee, Youngjin;Lee, Kichang
    • Journal of Veterinary Clinics
    • /
    • v.39 no.3
    • /
    • pp.114-120
    • /
    • 2022
  • The purpose of this study is to examine the status of quality control using multipurpose phantom of ultrasound equipment used in hospital of veterinary college in South Korea by using ATS-539 multipurpose phantom so as to examine quantitative and objective new image evaluation method. Specialists discussed and analyzed multipurpose phantom images acquired by using convex transducer of 10 ultrasound imaging devices, currently used in 9 veterinary colleges, at 4.0-6.0 MHz. Total 8 items that can be measured with ATS-539 multipurpose phantom including dead zone, vertical and horizontal measurement, axial/lateral resolution, sensitivity, focal zone, functional resolution and gray scale/dynamic range were evaluated. For qualitative evaluation, valid decisions were made based on dead zone, axial/lateral resolution, and gray scale/dynamic range which are resolution index, and coefficient of variation (COV) and blind referenceless image spatial quality evaluator (BRISQUE) were found to increase objectivity. As a result of experiment, all the targeted ultrasonic devices were found appropriate from qualitative evaluation items of dead zone, axial/lateral resolution, and gray scale/dynamic range. In other evaluation items, they were found to be appropriate from focal zone and vertical measurement of quantitative evaluation while inappropriate from horizontal measurement, sensitivity, and functional resolution. COV value was 0.12 ± 0.04, and BRISQUE value was 47.77 ± 2.77, both analysis results show that the noise level of all ultrasonic devices was located within tolerance range. Upon image examination using ATS-539 multipurpose phantom, they were 100% appropriate with inspection standards of dead zone, axial/lateral resolution, and gray scale/dynamic range, and besides, focal zone and functional resolution can be used as evaluation items. In the field of veterinary medicine, 8 standard items using ATS-539 multipurpose phantom and image evaluation items using COV and BRISQUE can be used as standards for quality control of ultrasonography machine.