• Title/Summary/Keyword: Hopkinson bar

Search Result 120, Processing Time 0.026 seconds

Design and Fabrication of Split Hopkinson Pressure Bar for Acquisition of Dynamic Material Property of Al6061-T6 (Al6061-T6 의 동적 물성 획득을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • An, Woo Jin;Woo, Min A;Noh, Hak Gon;Kang, Beom Soo;Kim, Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.587-594
    • /
    • 2016
  • The Split Hopkinson pressure bar (SHPB) test method, which is composed of three cylindrical bars, measuring devices and frames, is known for its reliable technique of acquiring the mechanical properties of specimens under a high strain rate. This paper demonstrates the processing of design and fabrication of SHPB. First of all, numerical analysis is applied in order to determine the design parameters of SHPB apparatus and verify the validity of design for a SHPB facility. Following this, SHPB apparatus were fabricated in accordance with acquired design parameters by simulation. In order to verify the validity of SHPB apparatus, experimental results using Al6061-T6 were compared with numerical data obtained from a corresponding simulation. The result of this comparative study demonstrates the applicability and validity of the fabricated apparatus.

Dynamic Fracture Toughness of Chevron-notch Ceramic Specimens measured in Split Hopkinson Pressure Bar

  • Lee, Yeon-Soo;Yoon, Young-Ki;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.69-75
    • /
    • 2002
  • Measuring dynamic fracture toughness of brittle and small ceramic specimen is very difficult in a SHPB (Split Hopkinson Pressure Bar). As a countermeasure to this difficulty, a dynamic fracture toughness measuring method by the Chevron-notch ceramic specimen was proposed. Tested chevron specimens were of Chevron notch angles of 90$^{\circ}$, 100$^{\circ}$ and 110$^{\circ}$. Through finite element analysis, shape parameters of the Chevron-notch specimens according to notch angles were calculated. And the static fracture tough1ess of the Chevron-notch alumina specimen was measured as 3.8MPa√m similar to that of CT specimen with a precrack. Dynamic fracture toughness was 4.5MPa√m slightly higher than the static one. It was shown in this study that the proposed Chevron-notch specimens are valid to measure dynamic fracture toughness of extremely brittle materials such as ceramic.

Dynamic deformation behavior of rubber and brass under high strain rate compressive loading (고변형률 속도 압축 하중 하에서의 고무와 황동의 동적 거동 특성)

  • 이억섭;김경준;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1491-1494
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s∼104/s. This type of test procedure has been used to examine the dynamic response of materials in various modes of testing. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading (SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동)

  • 이억섭;이종원;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

Dynamic tensile behavior of PMMA (PMMA의 동적 인장 거동)

  • Lee, Ouk-Sub;Kim, Myun-Soo;Hwang, Si-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.395-400
    • /
    • 2001
  • The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, has been used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the PMMA under high strain rate tensile loading are determined using SHPB technique.

  • PDF

Numerical Investigation of Frictional Effects and Compensation of Frictional Effects in Split Hopkinson Pressure Bar (SHPB) Test (수치해석을 이용한 SHPB 시험의 마찰영향 분석과 보정에 대한 연구)

  • Cha, Sung-Hoon;Shin, Hyun-Ho;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.511-518
    • /
    • 2010
  • The split Hopkinson pressure bar (SHPB) has been widely used to determine the mechanical properties of materials at high loading rates. However, to ensure test reliability, the source of measurement error must be identified and eliminated. During the experiment, specimens were placed between the incident and the transmit bar. Contact friction between the test bars and specimen may cause errors. In this study, numerical experiments were carried out to investigate the effect of friction on the test results. In the SHPB test, the stress measured by the transmitted bar is assumed to be the flow stress of the test specimen. However, performing numerical experiments, it was shown that the stress measured by the transmit bar is axial stress components. When the contact surface is frictionless, the flow stress and axial stress of the specimen are approximately equal. On the other hand, when the contact surface is not frictionless, the flow stress and axial stress are no longer equal. The effect of friction on the difference between the flow stress and axial stress was investigated.

SHPB인장 시험에서 알루미늄 합금의 진응력-진변형률 관계

  • Yang, Hyeon-Mo;Min, Ok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1917-1922
    • /
    • 2000
  • The split Hokinson pressure bar(SHPB) test has been used to find the mechanical property of materials at high strain rate. A tensile split Hopkinson pressure bar test system is developed and the threaded tensile specimen and the split collar are placed between elastic bars. When the compressive elastic wave generated by a striker is transferred from the transmit bar to the incident bar, some elastic wave is reflected at the threaded parts of the specimen and the transmit bar. This reflected wave can interfere with the transmitted wave. A proper length of elastic bars and the location of strain gage in these elastic bars are determined to avoid this interference. In order to avoid the interference of elastic wave reflected at the threaded parts of specimen and elastic bar, the length of transmit bar must be longer than that of incident bar. Strain gage in transmit bar must be located as close as possible from the interface of a transmit bar and specimen. In the developed tensile SHPB test system, A12011-T3 and A17075-T6 are tested to get the true stress-strain relation in the range of strain rate at $10^3/sec$

A Study on the Estimation of Dynamic Interlaminar Fracture Toughness on CFRP Laminates Plates (CFRP 적층판의 동적 층간파괴인성의 평가법)

  • 김지훈;김영남;판부직규;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.80-91
    • /
    • 1998
  • In this paper, the estimation of dynamic interlaminar fracture toughness on fracture mode II in CFRP(carbon fiber reinforced plastics) laminates in made. Dynamic ENF(End Notched Flexure) apparatus used in this paper is manufactured by suing Split Hopkinson Pressure Bar. The static and impact load history in the CFRP specimen is measured by using manufactured dynamic ENF tester and 3-point bending test is carried out to find the load history. Also dynamic interlaminar fracture toughness can be found by using the J integral obrained from dynamic analysis in consideration of intertia-force effect.

  • PDF

High-Strain Rate Tensile Behavior of Pure Aluminum Single and Multi-Crystalline Materials with a Tensile Split Hopkinson Bar (인장형 홉킨슨 바 장치를 이용한 알루미늄 단결정 및 멀티결정재의 동적 실험)

  • Ha, Sangyul;Jang, Jin Hee;Yoon, Hyo Jun;Kim, KiTae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • In this study, we modified the conventional tensile split Hopkinson bar(TSHB) apparatus typically used for the high strength steel to evaluate the tensile deformation behavior of soft metallic sheet materials under high strain rates. Stress-strain curves of high purity single and multi-crystalline materials were obtained using this experimental procedure. Grain morphology and initial crystallographic orientation were characterized by EBSD(Electron Backscattered Diffraction) method measured in a FE-SEM(Field emission-scanning electron microscopy). The fractured surfaces were observed by using optical microscopy. The relationship between plastic deformation of aluminum crystalline materials under high-strain rates and the initial microstructure and the crystallographic orientations has been addressed.

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite (폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • Kang, So-Young;Kim, Do-Hyoung;Kim, Dong-Hyun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.221-226
    • /
    • 2018
  • The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.