• Title/Summary/Keyword: Hop-depth

Search Result 21, Processing Time 0.021 seconds

An Efficient Routing Scheme Based on Node Density for Underwater Acoustic Sensors Networks

  • Rooh Ullah;Beenish Ayesha Akram;Amna Zafar;Atif Saeed;Sultan H. Almotiri;Mohammed A. Al Ghamdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1390-1411
    • /
    • 2024
  • Underwater Wireless Sensors Networks (UWSNs) are deployed in remotely monitored environment such as water level monitoring, ocean current identification, oil detection, habitat monitoring and numerous military applications. Providing scalable and efficient routing is very challenging in UWSNs due to the harsh underwater environment. The biggest difficulties are the nodes inherent movement due to water current, long delay in data transmission, low bandwidth of the acoustic signal, high error rate and energy scarcity in battery powered nodes. Many routing protocols have been proposed to solve the aforementioned problems. There are three broad categories of routing protocols namely depth based, energy based and vector-based routing. Vector Based Forwarding protocols perform routing through virtual pipeline by defining their radius which give proper direction to packets communication. We proposed a routing protocol termed as Path-Oriented Energy Scaled Expanded Vector Based Forwarding (PESEVBF). PESEVBF takes into account all parameters; holding time, the source nodes packets routing path and void holes creation on the second hop; PESEVBF not only considers the packet upward advancement but also focus on density of the forwarded nodes in terms of number of potential forwarding and suppressed nodes for path selection. Node selection in resultant holding time is based on minimum Path Factor (PF) value. Moreover, the suppressed node will be selected for packet forwarding to avoid the void holes occurrences on the second hop. Performance of PESEVBF is compared with other routing protocols using matrices such as energy consumption, packet delivery ratio, packets dropping ratio and duplicate packets creation indicating considerable performance improvement.

A Design of TNA(Traceback against Network Attacks) Based on Multihop Clustering using the depth of Tree structure on Ad-hoc Networks (애드혹 네트워크 상에 트리구조 깊이를 이용한 다중홉 클러스터링 기반 TNA(Traceback against Network Attacks) 설계)

  • Kim, Ju-Yung;Lee, Byung-Kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.772-779
    • /
    • 2012
  • In the current MANET, DOS or DDOS attacks are increasing, but as MANET has limited bandwidth, computational resources and battery power, the existing traceback mechanisms can not be applied to it. Therefore, in case of traceback techniques being applied to MANET, the resource of each node must be used efficiently. However, in the traceback techniques applied to an existing ad hoc network, as a cluster head which represents all nodes in the cluster area manages the traceback, the overhead of the cluster head shortens each node's life. In addition, in case of multi-hop clustering, as one Cluster head manages more node than one, its problem is getting even worse. This paper proposes TNA(Traceback against Network Attacks) based on multihop clustering using the depth of tree structure in order to reduce the overhead of distributed information management.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Efficient Spanning Tree Topology Aggregation Method in Private Networks Interface (사설망인터페이스에서 효율적 스패닝 트리 토폴로지 요약기법)

  • Kim, Nam-Hee;Kim, Byun-Gon;Lee, Jong-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.35-42
    • /
    • 2008
  • The proposed scheme in this paper can search multi-links efficiently using the depth priority method based on hop count instead of searching the all links. To do this, we proposed a modified line segment scheme using two line segment method. The scheme represents two points which consist of delay-bandwidth pair to reduce topology information and provide a flexibility to the multiple-links aggregation. And we apply it to current spanning tree topology aggregation. To evaluate performance of the proposed scheme, we compare/analyze the current method with the proposed scheme with respect to call success rate, access time and crankback rate. Simulation result analysis showed the proposed spanning tree topology aggregation scheme presents the better performance than existing scheme.

The Improved Full Mesh Topology Aggregation Scheme in PNNI (PNNI에서 향상된 Full Mesh Topology Aggregation 기법)

  • Kim Nam-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1556-1563
    • /
    • 2004
  • In this paper, we propose an efficient full mesh topology aggregation method in PNNI networks. The proposed scheme can search multi-links efficiently using the depth priority method based on hop count instead of searching the all links. To do this, we propose a modified line segment algorithm using two line segment method that represents two points which consist of delay-bandwidth pair to reduce topology information and provide a flexibility to the multiple-links aggregation. And we apply it to current full mesh topology aggregation. To evaluate performance of the proposed scheme, we compare/analyze the current method with the proposed scheme with respect to call success rate, access time and crank back rate. The result is that the proposed scheme is better than the current scheme in performance.

  • PDF

Implementation of LMPR on TinyOS for Wireless Sensor Network (전송 부하를 분산하는 무선 센서 네트워크 구축을 위한 TinyOS 기반 LMPR 구현)

  • Oh, Yong-Taek;Kim, Pung-Hyeok;Jeong, Kug-Sang;Choi, Deok-Jai
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.136-146
    • /
    • 2006
  • In Wireless Sensor Network(WSN) a sensor node transfers sensing data to the base-node through multi-hop because of the limited transmission range. Also because of the limited energy of the sensor node, the sensor nodes are required to consume their energy evenly to prolong the lifetime of the network. LMPR is a routing protocol for WSN, LMPR configures the network autonomously based on level which is the depth from the base-node, and distributes the transmission and computation load of the network to each sensor node. This paper implements LMPR on TinyOS and experiments on the performance of LMPR in WSN. As the result, the average of the received rate of LMPR is 91.39% and LMPR distributes the load of the transmission and computation about 4.6 times compare to the shortest cost routing protocol. We expect LMPR evenly distributes the transmission and computation load of the network to each node, and the lifetime of the network will be longer than it used to be.

  • PDF

A Study on Energy Conservative Hierarchical Clustering for Ad-hoc Network (애드-혹 네트워크에서의 에너지 보존적인 계층 클러스터링에 관한 연구)

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2800-2807
    • /
    • 2012
  • An ad-hoc wireless network provides self-organizing data networking while they are routing of packets among themselves. Typically multi-hop and control packets overhead affects the change of route of transmission. There are numerous routing protocols have been developed for ad hoc wireless networks as the size of the network scale. Hence the scalable routing protocol would be needed for energy efficient various network routing environment conditions. The number of depth or layer of hierarchical clustering nodes are analyzed the different clustering structure with topology in this paper. To estimate the energy efficient number of cluster layer and energy dissipation are studied based on distributed homogeneous spatial Poisson process with context-awareness nodes condition. The simulation results show that CACHE-R could be conserved the energy of node under the setting the optimal layer given parameters.

Clustering Algorithm for Efficient Energy Consumption in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 에너지 사용을 위한 클러스터링 알고리즘)

  • Na, Sung-Won;Choi, Seung-Kwon;Lee, Tae-Woo;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.49-59
    • /
    • 2014
  • Recently, wireless sensor networks(WSNs) are widely used for intrusion detection and ecology, environment, atmosphere, industry, traffic, fire monitoring. In this paper, an energy efficient clustering algorithm is proposed. The proposed algorithm forms clusters uniformly by selecting cluster head that optimally located based on receiving power. Besides, proposed algorithm can induce uniform energy consumption regardless of location of nodes by multi-hop transmission and MST formation with limited maximum depth. Through the above, proposed algorithm elongates network life time, reduces energy consumption of nodes and induces fair energy consumption compared to conventional LEACH and HEED. The results of simulation show that the proposed clustering algorithm elongates network life time through fair energy consumption.

Improved Star Topology Aggregation using Line Segment (라인 세그먼트를 이용한 향상된 Star Topology Aggregation)

  • Kim, Nam-Hee
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.645-652
    • /
    • 2004
  • In this paper, we aggregate multi-links information between boundary nodes using the line segment scheme that aggregates topology in-formation within PG referring bandwidth and delay parameter. The proposed scheme can search multi-links efficiently using the depth priority method based on hop count instead of searching all links. To do this, we propose a modified line segment algorithm using two line segment method that represents two points which consist of delay-bandwidth pair to reduce topology information and provide a flexibility to the multi pie-links aggregation. And we apply it to current star topology aggregation. To evaluate performance of the proposed scheme, we compare/analyze the current method with the proposed scheme with respect to call success rate, access time and crankback rate. Through the simulation result analysis, the proposed star topology aggregation scheme presents the better performance than existing scheme.

The Effects of Active Movement Myofascial Decompression Therapy and Static Myofascial Decompression Therapy on Range of Motion, Muscle Strength, Functional Movement in Young Adults. (젊은 성인에서 능동 움직임을 결합한 근막감압치료 적용과 정적 적용이 관절가동범위, 근력, 기능적 움직임에 미치는 영향)

  • Lee, Jee-Hyun;Kim, Tae-Hyeon;Kang, Si-Yun;Kum, Do-Gun;Lee, Sung-Yeon;Do, Kwang-Sun;Kim, Chang-Sook;Bae, Ju-Han;Park, Jun-Hyuck;Kim, Jae-Eun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Purpose : Myofascial decompression is frequently mentioned as a method applied to cupping. The purpose of this study is to evaluate and compare active range of motion (AROM), muscle strength, and functional movement by applying myofascial decompression to the hamstrings. Methods : This study evaluated AROM, muscle strength, and functional movement by applying active movement myofascial decompression and static myofascial decompression to the dominant leg, respectively, in a crossover design conducted with normal adults (n=21) in their average 20s enrolled at G University in G city, Gyeongsangbuk-do. Active movement myofascial decompression was implemented for five minutes at a rate of 100 bpm to make the beats in flexion and extension respectively. Static myofascial decompression was only performed for five minutes while at rest. All of these interventions were performed at a cupping depth of two mm. After a one-week washout period, static was applied again to compare the same dependent variables. Results : Regarding AROM and muscle strength, both groups showed significant differences in the before and after results (p<.05). However, in the Functional Reach Aspect and Single Leg Hop test, the active movement myofascial decompression group showed better results. There was no statistical difference between the Active movement myofascial decompression group and Static myofascial decompression group in any dependent variable (p<.05). Conclusion : As a result of this experiment, both active movement myofascial decompression and static myofascial decompression had a positive effect on dependent variable. Therefore this study is meaningful in that it is easier and simpler to see the effect on flexibility, muscle strength, and functional movement just by implementing movement myofascial decompression.