• Title/Summary/Keyword: Hop

Search Result 1,598, Processing Time 0.029 seconds

Bottleneck link bandwidth Measurement Algorithm for improving end-to-end transit delay in Grid network (그리드 네트워크에서 종단간 전송 지연 향상을 위한 bottleneck 링크 대역폭 측정 알고리즘)

  • Choi, Won-Seok;Ahn, Seong-Jin;Chung, Jin-Wook
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.923-928
    • /
    • 2003
  • This paper proposes a bottleneck link bandwidth measurement algorithm for reducing packet transmission delay within the grid network. There are two methods for measuring bottleneck link bandwidth:Packet Pair algorithm and Paced Probes algorithm. They measure bottleneck link bandwidth using the difference in arrival times of two paced probe packets of the same size traveling from the same source to destination. In addition, they reduce the influences of cross traffic by pacer packet. But there are some problems on these algorithms:it's not possible to know where bottleneck link occurred because they only focus on measuring the smallest link bandwidth along the path without considering bandwidth of every link on the path. So hop-by-hop based bottleneck link bandwidth measurement algorithm can be used for reducing packet transmission delay on grid network. Timestamp option was used on the paced probe packet for the link level measurement of bottleneck bandwidth. And the reducing of packet transmission delay was simulated by the solving a bottleneck link. The algorithm suggested in this paper can contribute to data transmission ensuring FTP and realtime QoS by detecting bandwidth and the location where bottleneck link occurred.

Bio-Inspired Resource Allocation Scheme for Multi-Hop Networks (멀티홉 네트워크에서 생체모방 기반 자원할당 기법)

  • Kim, Young-Jae;Jung, Ji-Young;Choi, Hyun-Ho;Han, Myoung-Hun;Park, Chan-Yi;Lee, Jung-Ryun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2035-2046
    • /
    • 2015
  • Recently, researches on resource allocation algorithms operating in a distributed way are widely conducted because of the increasing number of network nodes and the rapidly changing the network environment. In this paper, we propose Multi-Hop DESYNC(MH DESYNC), that is bio-inspired TDMA-based resource allocation scheme operating in a distributed manner in multi-hop networks. In this paper, we define a frame structure for the proposed MH DESYNC algorithm and firing message structure which is a reference for resource allocation and propose the related operating procedures. We show that MH DSYNC can resolve the hidden-node problem effectively and verify that each node shares resources fairly among its neighboring nodes. Through simulation evaluations, it is shown that MH DESYNC algorithm works well in a multi-hop networks. Furthermore, results show that MH DESYNC algorithm achieves better performance than CSMA/CA algorithm in terms of throughput.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

A Low Complexity Subcarrier Pairing Scheme for OFDM Based Multiple AF Relay Systems (OFDM 기반 다중 증폭 후 전달 릴레이 시스템에서 낮은 복잡도를 가지는 부반송파 페어링 기법)

  • Jeon, Eun-Sung;Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.12-17
    • /
    • 2009
  • We consider an OFDM based multiple AF relaying systems. Since the channel between first hop (source station-relay station) and second hop (relay station -destination station) varies independently, the subcarrier in the first hop can be paired to another subcarrier in the second hop for the increase of the system capacity. The conventional pairing which uses the brute force searching requires large complexity while giving optimal pairing for maximum system capacity. In this paper, we present sub-optimal subcarrier pairing scheme with low complexity. Every RS firstly pairs the subcarrier with the highest channel gain in the first hop to the subcarrier with highest channel gain in the second hop. The pair with the highest SNR among all the pairs is determined as final selected pair and the corresponding subcarriers are not selected at other RSs in the next paring iteration. This process is repeated until all the subcarriers are paired. Simulation results show the proposed pairing scheme achieves near optimal performance with low complexity.

Improved Positioning Algorithm for Wireless Sensor Network affected by Holes (홀 영향을 받는 무선 센서 네트워크에서 향상된 위치 추정 기법)

  • Jin, Seung-Hwan;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.784-795
    • /
    • 2009
  • An accurate positioning estimation in the wireless sensor networks (WSN) is very important in which each sensor node is aware of neighbor conditions. The multi-hop positioning estimation technique is considered as one of the suitable techniques for the WSN with many low power devices. However geographical holes, where there is no sensor node, may severely decrease the positioning accuracy so that the positioning error can be beyond the tolerable range. Therefore in this paper, we analyze error factors of DV-hop and hole effect to obtain node's accurate position. The proposed methods include boundary node detection, distance level adjustment, and unreliable anchor elimination. The simulation results show that the proposed method can achieve higher positioning accuracy using the hole detection and enhanced distance calculation methods compared with the conventional DV-hop.

Efficient Radio Resource Allocation for Cognitive Radio Based Multi-hop Systems (다중 홉 무선 인지 시스템에서 효과적인 무선 자원 할당)

  • Shin, Jung-Chae;Min, Seung-Hwa;Cho, Ho-Shin;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.325-338
    • /
    • 2012
  • In this paper, a radio resource allocation scheme for a multi-hop relay transmission in cognitive radio (CR) system is proposed to support the employment of relay nodes in IEEE 802.22 standard for wireless regional area network (WRAN). An optimization problem is formulated to maximize the number of serving secondary users (SUs) under system constraints such as time-divided frame structure for multiplexing and a single resource-unit to every relay-hop. However, due to mathematical complexity, the optimization problem is solved with a sub-optimal manner instead, which takes three steps in the order of user selection, relay/path selection, and frequency selection. In the numerical analysis, this proposed solution is evaluated in terms of service rate denoting as the ratio of the number of serving SUs to the number of service-requesting SUs. Simulation results show the condition of adopting multi-hop relay and the optimum number of relaying hops by comparing with the performance of 1-hop system.

Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

  • Cho, Hong-Rae;Kong, Yoon-Ju;Hong, Soo-Gil;Kim, Keun Pil
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.550-556
    • /
    • 2016
  • During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the $hop2{\Delta}$ or $sae3{\Delta}$ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

A Design of Multi-hop Network Protocol based on LoRaWAN Gateway

  • Kim, Minyoung;Jang, Jongwook
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • Currently, LPWA(Low Power Wide Area) communication technology is widely used due to the development of IoT(Internet of Things) technology. Among the LPWA technologies, LoRaWAN(Long Range Wide Area Network) is widely used in many fields due to its wide coverage, stable communication speed, and low-cost modem module prices. In particular, LoRa(Long Range) can easily construct LoRaWAN with a dedicated gateway. So many organizations are building their own LoRaWAN-based networks. The LoRaWAN Gateway receives the LoRa packet transmitted from an End-device installed in the adjacent location, converts it into the Internet protocol, and sends the packet to the final destination server. Current LoRa Gateway uses a single-hop method, and each gateway must include a communication network capable of the Internet. If it is the mobile communication(i.e., WCDMA, LTE, etc.) network, it is required to pay the internet usage fee which is installed in each gateway. If the LoRa communication is frequent, the user has to spend a lot of money. We propose an idea on how to design a multi-hop protocol which enables packet routing between gateways by analyzing the LoRaWAN communication method implemented in its existing single-hop way in this paper. For this purpose, this paper provides an analysis of the standard specification of LoRaWAN and explains what was considered when such protocol was designed. In this paper, two gateways have been placed based on the functional role so as to make the multi-hop protocol realized: (i) hopping gateway which receives packets from the end-device and forwards them to another gateway; and (ii) main gateway which finally transmits packets forwarded from the hopping gateway to the server via internet. Moreover, taking into account that LoRaWAN is wireless mobile communication, a level-based routing method is also included. If the protocol proposed by this paper is applied to the LoRaWAN network, the monthly internet fee incurred for the gateway will be reduced and the reliability of data transmission will be increased.

Interleaved Hop-by-Hop Authentication in Wireless Sensor Network Using Fuzzy Logic to Defend against Denial of Service Attack (인터리브드 멀티홉 인증을 적용한 무선 센서네트워크에서 퍼지로직을 이용한 서비스 거부 공격에 대한 방어 기법)

  • Kim, Jong-Hyun;Cho, Tac-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • When sensor networks are deployed in open environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False report attack can lead to not only false alarms but also the depletion of limited energy resources in battery powered networks. The Interleaved hop-by-hop authentication (IHA) scheme detects such false reports through interleaved authentication. In IHA, when a report is forwarded to the base station, all nodes on the path must spend energies on receiving, authenticating, and transmitting it. An dversary can spend energies in nodes by using the methods as a relaying attack which uses macro. The Adversary aim to drain the finite amount of energies in sensor nodes without sending false reports to BS, the result paralyzing sensor network. In this paper, we propose a countermeasure using fuzzy logic from the Denial of Service(DoS) attack and show an efficiency of energy through the simulataion result.