DOI QR코드

DOI QR Code

Bio-Inspired Resource Allocation Scheme for Multi-Hop Networks

멀티홉 네트워크에서 생체모방 기반 자원할당 기법

  • Received : 2015.09.01
  • Accepted : 2015.10.06
  • Published : 2015.10.31

Abstract

Recently, researches on resource allocation algorithms operating in a distributed way are widely conducted because of the increasing number of network nodes and the rapidly changing the network environment. In this paper, we propose Multi-Hop DESYNC(MH DESYNC), that is bio-inspired TDMA-based resource allocation scheme operating in a distributed manner in multi-hop networks. In this paper, we define a frame structure for the proposed MH DESYNC algorithm and firing message structure which is a reference for resource allocation and propose the related operating procedures. We show that MH DSYNC can resolve the hidden-node problem effectively and verify that each node shares resources fairly among its neighboring nodes. Through simulation evaluations, it is shown that MH DESYNC algorithm works well in a multi-hop networks. Furthermore, results show that MH DESYNC algorithm achieves better performance than CSMA/CA algorithm in terms of throughput.

최근 네트워크 단말 수가 증가하고 네트워크 환경이 빠르게 변함에 따라 분산처리 방식의 자원할당 기법이 많이 연구되고 있다. 본 논문에서는 멀티 홉 환경에서 생체모방 알고리즘을 활용하여 분산적인 방법으로 TDMA 자원을 할당받는 Multi-Hop DESYNC 알고리즘(MH DESYNC)을 제안한다. 본 논문에서는 이를 위한 프레임 구조와 자원 할당의 기준 척도가 되는 firing 메시지 구조를 정의하고 관련된 동작 절차를 제안한다. 이를 통해 멀티 홉 환경에서 발생할 수 있는 hidden-node 문제와 firing 신호의 충돌이 발생하였을 때, 충돌 문제를 해결하는 방안을 제시하였다. 모의실험을 통해 멀티 홉 환경에서 제안한 MH DESYNC 알고리즘이 hidden-node 문제를 효과적으로 해결하고 각 노드가 주위 노드와 공평하게 자원을 할당하고 CSMA/CA 알고리즘 보다 데이터 전송율 측면에서 우수한 성능을 나타내는 것을 확인 하였다.

Keywords

References

  1. G. Bianchi, L. Fratta, and M. Oliveri, "Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs," PIMRC, vol. 2, pp. 392-396, Oct. 1996.
  2. J. Lee, J. M. Ahn, K. Lee, and T.-J. Park, "Performance analysis of peer aware communications with CSMA/CA based on overhearing," J. KICS, vol. 39B, no. 5, pp 251-259, May 2014. https://doi.org/10.7840/kics.2014.39B.5.251
  3. A. Lozano and D. C. Cox, "Distributed dynamic channel assignment in TDMA mobile communication systems," IEEE Trans. Veh. Technol., vol. 51, no. 6, pp. 1397-1406, Nov. 2002. https://doi.org/10.1109/TVT.2002.802969
  4. Y. Wang and I. Henning, "A deterministic distributed TDMA scheduling algorithm for wireless sensor networks," WICom 2007, pp. 2759-2762, Shanghai, China, Sept. 2007.
  5. L. C. Pond and V. O. K. Li, "A distributed time slot assignment protocol for mobile multi-hop broadcast packet radio networks," MILCOM '89, vol. 1, pp. 70-74, Boston, USA, Oct. 1989.
  6. C. D. Young, "USAP: a unifying dynamic distributed multichannel TDMA slot assignment protocol," MILCOM '96, vol. 1, pp. 235-239, Mclean, USA, Oct. 1996.
  7. C. D. Young, "USAP multiple access: dynamic resource allocation for mobile multihop multichannel wireless networking," MILCOM '99, pp. 271-275, Atlantic City, USA, Nov. 1999.
  8. M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE Computational Intell. Mag., vol. 1, no. 4, pp. 28-39, Nov. 2006. https://doi.org/10.1109/MCI.2006.329691
  9. M.-J. Kim, J.-H. Choi, and Y.-S. Cho, "Convergence analysis of distributed time and frequency synchronization algorithm for OFDMA-based wireless mesh networks using bio-inspired technique," J. KICS, vol. 39A, no. 8, pp. 88-490, Aug. 2014.
  10. J. Son, S. Shon, and H. Byun, "Bio-inspired energy efficient node scheduling algorithm in wireless sensor networks," J. KICS, vol. 38A, no. 6, pp. 528-534, Jun. 2013. https://doi.org/10.7840/kics.2013.38A.6.528
  11. G. Werner-Allen, G. Tewari, A. Patel, R. Nagpal, and M. Welsh, "Firefly-inspired sensor network synchronicity with realistic radio effects," SenSys '05, pp. 142-153, New York, USA, Nov. 2005.
  12. J. Degesys, I. Rose, A. Patel, and R. Nagpal, "Desync: self-organizing desynchronization and TDMA on wireless sensor networks," IPSN '07, pp. 11-20, New York, USA, Apr. 2007.
  13. J. A. Acebron, L. L. Bonilla, C. J. Perez-Vicente, F. Ritort, and R. Spigler, "The kuramoto model: A simple paradigm for synchronization phenomena," Rev. Mod. Phys., vol. 77, pp. 137-185, 2005. https://doi.org/10.1103/RevModPhys.77.137
  14. J. Degesys, I. Rose, A. Patel, and R. Nagpal, "Self-organizing desynchronization and TDMA on wireless sensor networks," Bio-Inspired Comput. Commun., vol. 5151, pp. 192-203, Cambridge, UK, Apr. 2007.
  15. A. Patel, J. Degesys, and R. Nagpal, "Desynchronization: The theory of self-organizing algorithms for round-robin scheduling," SASO '07, pp. 87-96, Cambridge, UK, Jul. 2007.
  16. J. Degesys and R. Nagpal, "Towards desynchronization of multi-hop topologies," SASO '08, pp. 129-138, Venezia, Italy, Oct. 2008.
  17. A. Motskin, T. Roughgarden, P. Skraba, and L. Guibas, "Lightweight coloring and desynchronization for networks," IEEE INFOCOM 2009, pp. 2383-2391, Rio de Janeiro, Brazil, Apr. 2009.
  18. C. Muhlberger and R. Kolla, Extended desynchronization for multi-hop topologies, Institut fur Informatik, Universitat Wurzburg, Tech. Rep. 460, 2009.
  19. C.-M. Lien, S.-H. Chang, C.-S. Chang, and D.-S. Lee, "Anchored desynchronization," IEEE INFOCOM, pp. 2966-2970, Orlando, USA, Mar. 2012.

Cited by

  1. 분산 네트워크에서 단말 간 동기화를 위한 신뢰도 기반의 적응적 컨센서스 알고리즘 vol.42, pp.3, 2015, https://doi.org/10.7840/kics.2017.42.3.545