• Title/Summary/Keyword: Hooked bar

Search Result 20, Processing Time 0.026 seconds

Anchorage performance tests of SD700 hooked bar and headed bar with a anchorage length of 20db (20db 정착길이를 가지는 SD700 갈고리철근과 확대머리철근의 정착성능 실험)

  • Kim, Ho Young;Sim, Hye Jung
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • With the increase of the skyscraper center, the development of large-diameter and high-strength reinforcing bars is being carried out to solve the dense reinforcement. In case of the steel reinforced concrete with a small cross section such as beam-column joints, the development length becomes short when straight bars are used. Therefore, it is possible to solve the problem that the development length becomes short by using the bearing strength of the hooked bar and headed bar. In this study, the exterior beam-column joint test of SD700 hooked bar and headed bar with anchorage length of 20db was conducted to extend the development length limitation of hooked bar and headed bar. As a result of the evaluation of the anchorage strength using the design equation by KCI, the average of the [measured value]/[predicted value] ratio was 1.31 for the hooked reinforcing bars. In the case of headed bars, the average of the [measured value]/[predicted value] ratio was 1.12. In addition, in order to compare the anchorage performance of the hooked bar and the headed bar, the measured values were divided by the square root of the compressive strength of the concrete to compare the anchorage strength. Under the same conditions, the anchorage strength of headed bars was 8.5% higher than the hooked bars.

Effects of the Number of Hooked Bars on Anchorage Conditions at Exterior Joints (외측 보-기둥 접합부의 정착 상태에 관한 훅크철근의 영향)

  • Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.151-156
    • /
    • 1997
  • An experimental study was performed on the pull-out behavior of 90-deg standard hooks from exterior beam-column connections. The effects of the number of hooked bars of joint area were investigated. Under the pull-out action of hooked bars, the damage and cracking of joint area tends to be more extensive as the number of hooks pulling out from a joint increases. The pull-out strength and post-peak ductility of hooked bar are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at exterior joints.

  • PDF

An Experimental Study on Bonding Capacity by Concrete Strength and Type of Re-bar Anchor (콘크리트 강도별 매입 철근의 유형별 부착력 측정실험)

  • Cho, Seong-Yeol;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Many construction equipment or supporting structure should be installed in a field without appropriate anchorage to cause a collapse of those. Anchor length, anchor diameter, hooked or non hooked will be made and tested in the study. This one will be analyzed and compared with the previous study in order to find out some difference, strength by strength, based on this study. Embedded re-bar and the resistant capacity against pulled out force of re bar have been tested and analyzed by concrete design strength and rebar diameter in the study. 21Mpa and 24MPa compressive strength which are used in construction practice have been applied as variables. Those rebars are composed of D13, D16. D22 which are mostly used at construction sites. The followings are summarized as conclusions.1) ductility is not increased as rebar diameter becomes larger under the condition of non-hooked anchorage.2) those are two times of displacement difference between small diameter of rebar and large one with hooked anchorage of rebar while being 1/10 times difference with non-hooked condition but, only 10% difference of maximum load are shown, not conspicuously between hooked and non-hooked condition.3) displacement related to ductility can be three(3) times decreased if only concrete compressive strength and rebar diameter become larger with heavy support weight.

Effects of Steel Fiber Reinforcement and the Number of Hooked Bars at R/C Exterior Joints

  • Choi, Ki-Bong
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 1999
  • An experimental study was performed on the Pull-out behavior of 90-deg standard hooks from the exterior beam-column connections. the effects of the number of hooked bars and fiber reinforcement of the joint area were investigated with the following conclusions : (1) Under the pull-out action of hooked bars. the damage and cracking of joint area the number of hooks pulling out from a joint increases; (2) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by the pull-out of hooked bars; (3) The pull-out strength and post-peak ductility of hooked bars are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at the exterior joints; and (4) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers . The application of steel fibers to the exterior joints is an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in the beam-column connections.

  • PDF

ACI 349 Code Change to Use the Gr.80 Headed Deformed Bars in Nuclear Power Plant Structures (Gr.80 확대머리철근의 원전구조물 적용을 위한 ACI 349 코드개정에 관한 연구)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.200-201
    • /
    • 2017
  • Generally, a lot of reinforcements are used in nuclear power plant concrete structures, and it may cause several potential problems when concrete is poured. Because of the congestion caused by hooked bars, embedded materials, and other reinforcements, it is too difficult to pour concrete into structural member joint area. The purpose of this study is to change ACI 349 Code for using the large-size(57mm) and high-strength(Gr.80) headed deformed bars instead of standard hooked bars in nuclear power plant concrete structures in order to solve the congestion problems.

  • PDF

Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement

  • Safan, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.623-636
    • /
    • 2012
  • The aim of the current work is to describe the flexural behaviour of simply supported concrete beams with tension reinforcement spliced at mid-span. The parameters included in the study were the type of the concrete, the splice length and the configuration of the hooked splice. Fifteen beams were cast using an ordinary concrete mix and two fiber reinforced concrete mixes incorporating steel and polypropylene fibers. Each concrete mix was used to cast five beams with continuous, spliced and hooked spliced tension steel bars. A test beam was reinforced on the tension side with two 12 mm bars and the splice length was 20 and 40 times the bar diameter. The hooked bars were spliced along 20 times the bar diameter and provided with 45-degree and 90-degree hooks. The test results in terms of cracking and ultimate loads, cracking patterns, ductility, and failure modes are reported. The results demonstrated the consequences due to short splices and the improvement in the structural behaviour due to the use of hooks and the confinement provided by the steel and polypropylene fibers.

An Experimental Study on the Anchorage Capacity by Diameter and Anchor Type of Re-bar (콘크리트 구조체 매입 철근의 직경 및 유형별 앵커력 측정실험 연구)

  • Cho, Seong-Yeol;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.67-73
    • /
    • 2014
  • Construction equipment such as tower crane should be installed in a field without appropriate anchorage to cause a collapse of crane. The anchorage capacity can be varied with Anchor length, concrete strength, anchor diameter, hooked or non hooked these variables will be made and tested in the study. It is shown what anchorage capacity will be more effective case by case. Hooked and non-hooked rebar anchor concrete weight with dia 22mm rebar are shown with initial displacement at 170~220KN of hooked case and 200~210KN of non-hooked one which are linearly increased, without any ductility behavior with almost brittleness. Three(3) same test pieces are almost similarly behaviored without relation to hooked or non-hooked cases. It is found out that the bigger diameter of rebar becomes, the more resistant capacity could be made, but conversely ductility against sudden collapse similar to brittleness becomes the more insufficient. It is also found out that dia 16mm rebar could be more effectively applied to heavy support weight at construction sites.

Mechanical Bar Anchorage of the PC Beam in Beam-Column Joint Using Plates and Bolts (지지대 및 제결볼트를 이용한 프리캐스트 콘크리트 골조구조의 보 하단 철근 정착공법 개발)

  • 유영찬;최근도;김긍환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.539-544
    • /
    • 2000
  • The purpose of this study is to develop the mechanical anchorage, namely MAB-BOP (Mechanical Anchorage of 90$^{\circ}$ Hooked Bars with BOlt nad Plate) of the beam-column joint in precast concrete framed structures. Six specimens simulating typical interior beam-column joints were tested to investigate the mechanical characteristics of MAB-BOP. Of primary interest was the measurement of the slip of the anchored bar. Th load-slip curve obtained from this test were used to compare the mechanical performances of the different anchoring methods. Based on the test results, it was found that MAB-BOP showed sufficient anchoring strength capacity compared to 90$^{\circ}$ hooked bar method. So, MAB-BOP can be used as the anchoring methods of the reinforcing bars in PC beam-column joint.

  • PDF

Development Length of High-Strength Standard Hooked Bars (550MPa) in Nuclear Power Plant Structures (고강도철근(550MPa)의 원전구조물 적용을 위한 표준갈고리 정착설계)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.99-100
    • /
    • 2018
  • Because of the congestion problems, the high-strength reinforcements are expected to be used in nuclear power plant structures in the near future. According to ACI 349-13, it is permitted to use the high-strength(550MPa) hooked bars in design of development length, but there is no special equation for high-strength bars. In order to reflect the anchorage capacity and behavior properties of high-strength bars with large-diameter(43 & 57mm), it is necessary to develope the new development length equation for large-size and high-strength bars.

  • PDF

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints (보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동)

  • Bae, Min-Seo;Chun, Sung-chul;Kim, Mun-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.611-620
    • /
    • 2016
  • In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.