• Title/Summary/Keyword: Honeycomb Type

Search Result 103, Processing Time 0.024 seconds

A Study of Non-thermal Plasma Generation on a Photocatalytic Reactor Using a Ceramic Honeycomb Monolith Substrate (세라믹 벌집형 담체를 사용한 광촉매 반응기의 플라즈마 생성에 관한 연구)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.48-54
    • /
    • 2002
  • Since photocatalysts are activated by lights of UV wavelengths, plasma is alternatively used as a light source for a photocatalytic reactor. Light intensity generated by plasma is proportional to the surface area of catalytic material, and this, in many practical applications, is prescribed by the geometry of a plasma generator. Thus, it is crucial to increase the surface area far sufficient light intensity for photocatalytic reaction. For example, in a pack-bed type reactor, multitudes of beads are used as a substrate in order to increase the surface area. Honeycomb monolith type substrate, which has very good surface area to volume ratio, has been difficult to apply plasma as a light source due to the fact that light penetration depth through the honeycomb monolith was too short to cover sufficient area, thus resulting in poor intensity for photocatalytic reaction. In this study, nonthermal plasma generation through a photocatalytic reactor of honeycomb monolith substrate is investigated to lengthen this short penetration depth. The ceramic honeycomb monolith substrate used in this study has the same length as a three way catalyst used fur automotive applications, and it is shown that sufficient light intensity for photocatalytic reaction can also be obtained with honeycomb monolith type reactor.

Evaluation of the Property of adiabatic Insulation for TTX Train with Sandwich Composite bodyshell (샌드위치 복합소재가 적용된 틸팅 차량의 단열 특성 평가 연구)

  • Lee Sang-Jin;Oh Kyung-Won;Jeong Jong-Cheol;Cho Se-Hyun;Seo Soung-il
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.251-256
    • /
    • 2005
  • This study was performed the heat transportation ratio of three types of the following sandwich panel by KS F 2278(2003) ; Type ${\sharp}1$ : Carbon/epoxy Aluminum Honeycomb and Balsa Core Sandwich Panel(Thickness : 37mm), Type ${\sharp}2$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 57mm), and Type ${\sharp}3$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 37mm). Also was performed the heat transportation of next three types of the following sandwich panel by KS F2277(2002) ; Type ${\sharp}4$ and ${\sharp}5$ : 27mm, and 35mm thick-Aluminum Honeycomb Sandwich Panels, and Type ${\sharp}6$ : 27mm thick-Foaming Aluminum Sandwich Panel. It is the larger area between the skin and core, the heat transportation ratio is the higher, and when it is composed of the hybrid composite structure, good insulation property was shown.

  • PDF

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

A Fundamental Study for a Photocatalytic Reactor Design (광촉매 반응치 설계를 위한 기초 연구)

  • 손건석;윤승원;고성혁;김대중;송재원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • Because UV wavelength lights can activate photocatalysts, plasma is used as a light source of a photocatalytic reactor. Even though plasma has good intensity for photo reaction, substrate of catalyst coating was limited by the geometry of plasma generator. Usually bead type substrate was used for a pack bed type reactor. Honeycomb monolith type substrate was used with UV lamps instead plasma, due to the light penetration the honeycomb monolith length was too short to show good activity In this study a photocatalytic reactor, which is using a honeycomb monolith substrate, was investigated with plasma as an activation light source. As a parametric study the effects of 1311owing factors on plasma generation and power consumption are examined; supply voltage, substrate length, environment condition, catalyst loading and ratio. Using the test results, the practicability test was done with simulated synthetic gases representing bad smells and automotive exhaust gases.

LOCAL WELL-POSEDNESS OF DIRAC EQUATIONS WITH NONLINEARITY DERIVED FROM HONEYCOMB STRUCTURE IN 2 DIMENSIONS

  • Lee, Kiyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1445-1461
    • /
    • 2021
  • The aim of this paper is to show the local well-posedness of 2 dimensional Dirac equations with power type and Hartree type nonlin-earity derived from honeycomb structure in Hs for s > $\frac{7}{8}$ and s > $\frac{3}{8}$, respectively. We also provide the smoothness failure of flows of Dirac equations.

Vibration Characteristics of Non-pneumatic Tire with Honeycomb Spokes (Honeycomb 스포크 구조를 갖는 비 공기압 타이어의 진동 특성)

  • Jo, Hongjun;Lee, Chihoon;Kim, Kwangwon;Kim, Dooman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.174-180
    • /
    • 2013
  • The vibration characteristic of tire is heavily related to the noise and comfort on driving. Therefore, in this paper, we investigate modal charateristic of non-pneumatic tires with Honeycomb spokes. The modal analysis of non-pneumatic tire is investigated for geometric of non-pneumatic tire(NPT) which is designed according to the cell angle of honeycomb cell. Investigation of natural frequencies and mode shapes of non-pneumatic tire are compared regular type NPT with auxetic type NPT. The analysis is based on the finite element method and used ABAQUS program which is able to analyze of non-linear. The material of NPT is used for the Ogden energy model which is model of hyperelastic material. As a result, natural frequencies and mode shapes of non-pneumatic tires with honeycomb spokes are affected by the angle of honeycomb cell.

A Study on the Development of Stress Tolerant Structural Systems in the Frame of Built-up Greenhouses (내재해형 조립 비닐하우스 골조 구조시스템 개발 연구)

  • Han, Duckjeon;Shim, Jongseok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • The collapsing accidents of greenhouse frames have been increased yearly due to strong wind and heavy snow, but as it was, there were few studies about the structural safety of greenhouses. Therefore, this study was carried out to develop the stress tolerant structural frame systems in built-up greenhouses. The vertical loading experiment of developed scale models were implemented and the developed types of models were simulated by 3-D analysis program in this study. These types of models, which are existing type and honeycomb type, in arch and standard style frames were classified. As a result of this study, it was verified that the honeycomb type model of arch style frame is better than the existing type model of it in stress resistance against snow load and wind load.

Development of a New-type Apparatus Decomposing Volatile Organic Compounds using a Combination System of an Electrical Exothermic SiC Honeycomb and a Catalytic Filter

  • Nishikawa, Harumitsu;Takahara, Yasumitsu;Takagi, Osamu;Tsuneyoshi, Koji;Kato, Katsuyoshi;Ihara, Tadayoshi;Wakai, Kazunori
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • A new-type apparatus decomposing volatile organic compounds (VOCs) using a combination system of an electrical exothermic SiC honeycomb and a catalytic filter was developed. This linear combination system is very useful to the catalytic decomposition of VOCs, because the gas involving VOCs is well heated in the SiC honeycomb and then flows into the catalytic filter. In the proposed apparatus, the outlet gas temperatures of SiC honeycomb maintained at ca. $300^{\circ}C$ after 5 min from the starting of applying electric current, and sufficient for the catalytic degradation of VOC components, i.e. toluene, isopropanol, methyl ethyl ketone and ethyl acetate. The average decomposition rate of total VOCs exhausted from a printing factory was 85% using pt catalyst at SV=19,000 in this system.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK (소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성)

  • Mo, Se-Young;Jeon, Dong-Hwan;Kwon, Ki-Seung;Sohn, Jong-Ryeul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.