• 제목/요약/키워드: Honeybee

Search Result 149, Processing Time 0.034 seconds

Prevalence of honeybee (Apis mellifera) disease in Daejeon (대전광역시 양봉농가의 꿀벌질병 감염률 조사)

  • Kim, Young-ju;Kim, Jong-ho;Oh, Yoon-hee;Lee, Sang-joon;Song, Sun-kyong;Joung, Eun-young;Lee, Sang-joon;Lee, Seok-ju;Moon, Byeong-cheon
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This study was conducted to investigate the prevalence of honey bee (Apis mellifera) disease in Daejeon. From May to September in 2014, 63 samples were collected from 63 apiculture farms in the regions and reverse transcriptase-polymerase chain reaction (RT-PCR) and polymerase chain reaction (PCR) was conducted. A total of 11 infectious pathogens, including 6 virus, 2 bacteria, 2 fungi, and 1 parasite, were investigated in honeybee colonies suffering from symptom of sudden collapse, depopulation or paralysis. The infectious pathogens and infection rates among 63 honeybee colonies detected were as follows: sacbrood virus (12.7%), chronic bee paralysis virus (1.6%), stonebrood (11.1%), American foulbrood (19.0%), European foulbrood (6.3%), respectively. The result indicate that foul-brood was most prevalent disease in apiculture farms in Daejeon area.

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.

High Level of Sequence-Variation in Sacbrood Virus (SBV) from Apis mellifera

  • Truong, A-Tai;Kim, Jung-Min;Lim, Su-Jin;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.32 no.4
    • /
    • pp.281-293
    • /
    • 2017
  • Sacbrood virus (SBV) is one of the main pathogenic RNA viruses of honeybee. SBV is found worldwide and many local strains have been reported, such as kSBV, cSBV, and wSBV. In this study, SBV-specific DNA fragments were cloned and sequenced by reverse-transcription PCR from 4 populations of A. mellifera, 4 sequences from 1 population belonged to the 2134D51 genotype (349 nucleotides, nt) and 12 sequences from 3 populations belonged to the 2100D0 genotype (400 nt) among the 16 determined sequences. A total of 87 points of mismatches were found by comparison with the most similar sequences in GenBank. Seventeen single-nucleotide polymorphisms (SNP) were detected, and 6 SNP-patterns in the 2100D0 genotype and 2 SNP-patterns in the 2134D51 genotype were identified based on SNP positions. In SNP-pattern 2, 10 SNPs were detected, but only 2 SNPs were found in SNP-pattern7. Meanwhile, one SNP-pattern was found from one RNA-sample, multi SNP-patterns were detected from other RNA-samples. Large numbers of SNP variants indicate that vast numbers of point-mutations on SBV have occurred since SBV invaded Korea and that SNP smay have been introduced individually over time. Thorough analysis of SNP variants will not only define the local infection-route, but also the relationships between SNP-pattern and SBV-pathogenic abilities.

Quantitative Detection of Tropilaelaps in Hive by Specific Gene Detection from Hive Debris (봉변에서 특이 유전자 검출법에 의한 봉군 내 꿀벌가시응애류 (Tropilaelaps)의 정량적 검출)

  • Kim, Byounghee;Kim, Somin;Kim, Moonjung;Kim, Jungmin;Truong, A Tai;Kim, Seonmi;Yoon, Byoungsu
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.27-37
    • /
    • 2019
  • Rapid detection of Tropilaelaps, an external parasite of honeybees that lead to malformation of honeybee or colony collapse disorder, is becoming important. But it is very difficult to find with the naked eye of Tropilaelaps. In this study, we have developed a method to detect the specific gene of Tropilaelaps from the hive debris and to know the number of Tropilaelaps in the hive through Tropilaelaps-specific quantitative detection. Tropilaelaps-specific gene amplified in DNA extracted from hive debris by consecutive PCR (1st detection, 2nd nested PCR). It could detect 101 molecules level of Tropilaelaps-specific gene and confirm the amplification of the Tropilaelaps-specific gene. It was possible to accurately quantify the number of Tropilaelaps from the hive debris sample, which is difficult to discriminate the presence of Tropilaelaps visually, through Tropilaelaps-specific detection. Under the microscope, Tropilaelaps was collected and quantitative detection of Tropilaelaps-specific genes was performed. It was possible to quantify the number of Tropilaelaps present in the hive through the molecules of the quantified Tropilaelaps-specific genes. We suggest that hive debris can represent as a micro-environment to hive and show that it can be a simpler and more accurate sample than using a parasitic host honeybee. We expect that hive debris should facilitate the monitoring of Tropilaelaps in hive.

A Study on the Enzyme Activities of a Honeybee(Apis cerana F.) Associated with the Degradation of Some Insecticides. (살충제분해에 관여하는 동양종(東洋種)꿀벌의 효소활성(酵素活性)에 관(關)한 연구(硏究))

  • Suh, Yong-Tack;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 1989
  • This study was conducted to investigate insecticide toxicities to a honeybee, Apis cerana F. being raised in Korea and its detoxifying enzyme activities. In order to determine the appropriate usage of insecticides, median effective dose and detoxifying enzyme activities to seven insecticides were observed. Various detoxifying enzymes, including microsomal oxidases, glutathione S-transferases, esterases, and DDT-dehydrochlorinase were assayed in the midguts of adult worker bees as the enzyme source. Of the insecticides used, $LC_{50}$ value in DDT treatment was the highest as 19ppm, and that in EPN treatment was the lowest as 0.75ppm. Sublethal exposures of honeybees to various insecticides had some effects on microsomal enzyme activities. Aldrin epoxidase activity was inhibited by malathion and demeton S-methyl treatment. N-demethylase activity was induced by carbaryl treatment. Of the glutathione S-transferases, aryltransferase(DCNB conjugation) activity was significantly induced by diazinon, and moderately induced by malathion. Of the esterases, ${\alpha}-NA$ esterase activity was moderately inhibited by malathion and permethrin. Carboxylesterase and acetylcholinesterase activity were not affected by the sublethal exposure of honeybee to the insecticides. Sublethal exposure of honeybee to the insecticides had no effect on DDT- dehydrochlorinase activity, except carbaryl, malathion and demeton S-methyl were inhibited.

  • PDF

Honeybee Acute and Residual Toxicity of Pesticides Registered for Strawberry (딸기용 농약의 꿀벌에 대한 급성독성 및 엽상잔류독성)

  • Kim, Byung-Seok;Park, Yoen-Ki;Lee, Yong-Hoon;Joeng, Mi-Hye;You, Are-Sun;Yang, Yu-Jung;Kim, Jin-Bae;Kwon, Oh-Kyung;Ahn, Young-Joon
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.229-235
    • /
    • 2008
  • Lack of honey bee toxicity data for most pesticide products used for strawberry restricts to predict the adverse effects to foraging honey bee after treatment of pesticide in plastic house. This study was conducted to evaluate the actual risk of worker honey bees (Apis mellifera L.) through acute contact toxicity test, acute oral toxicity test and toxicity of residues on foliage test with 21 pesticide products. The mortality of honeybee sprayed with 6 pesticides including dichlofluanid WP showed significantly different from control at recommended application rate in acute contact toxicity test at 24 hours after treatment. Fenpropathrin EC and milbemectin EC treatment groups showed more than 25% mortalities at recommended application rate in acute oral toxicity test. In toxicity of residues on foliage test, only fenpropathrin EC treatment group showed more than 25% mortalities at 10 days after treatment at recommended application rate. It was concluded that the most toxic route to exposure for honey bee is direct contact exposure to sprayed pesticides. Safety interval for honey bee was established by concerning the results of these tests.

Enzyme Activities of a Honeybee(Apis mellifera L.) Associated with the Degradation of Some Insecticides (서양종(西洋種)꿀벌의 살충제분해효소에 관(關)한 연구(硏究))

  • Suh, Yong-Tack;Shim, Jae-Han
    • Applied Biological Chemistry
    • /
    • v.31 no.3
    • /
    • pp.241-248
    • /
    • 1988
  • In order to determine the approptiate usage of insecticides to honeybee(Apis mellifera L.), median effective dose to seven insecticides were studied. $LC_(50)$ value of DDT was the highest as being 58 ppm, and that of EPN was the lowest as being 1.61ppm. Various detoxifying enzymes from the midget cf adult worker bee, including microsomal oxidases, glutathione Stransferases, esterases, and DDT-dehydrochlorinase were assayed. Effects of various insecticides on microsomal enzyme activities were as follows: Aldrin epoxidase activity was inhibited by malathione and permethrin treatment. N-demethylase activity was induced by diazinon and EPN treatment and O-demethlase activity was induced by diazinon treatment. Of the glutathione S-transferases, aryltransferase(DCNB conjugation) activity was significantly induced by diazinon, and moderately induced by permethrin. Of the esterases, ${\alpha}-NA$ esterase activity was moderately inhibited by malatjione and permethrin. Acetylcholinesterase activity was not affected by the sublethal exposure of honeybee to the insecticides. Sublethal exposure of honeybee to the insecticides had no effect on DDT-dehydrochlorinase activity, except carbaryl and permethrin were significantly induced.

  • PDF

Synergistic and Antagonistic Interactions for Pesticide mixtures to Honeybee Larvae Toxicity (농약 혼용에 따른 꿀벌유충 독성의 상승 및 상쇄 영향)

  • Paik, Min Kyoung;Im, Jeong Taek;Chon, Kyongmi;Park, Kyung-Hun;Choi, Yong-Soo;Lee, Myeong-Lyeol;Bae, Chul-Han;Kim, Jin-Ho;Moon, Byeong Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • BACKGROUND: Recently, the widespread distribution of pesticides in the hive has been of concern about pesticide exposure on honeybee (Apis mellifera L.) health. Larval toxicity was adapted to assess the synergistic and antagonistic interaction of cumulative mortality to the honeybee larvae of the four most common pesticides detected in pollen. METHODS AND RESULTS: Acetamiprid($3.0{\mu}l/L$), chlorothalonil ($803.0{\mu}l/L$), coumaphos ($128.0{\mu}l/L$), and tau-fluvalinate ($123.0{\mu}l/L$) were tested in combination; binary, ternary and four component mixture. Larvae were exposed to four pesticides mixed in diet at the average levels detected in pollen. As a result, synthetic toxicity was observed in the binary mixture of acetamiprid with coumaphos. The binary and ternary component mixtures of tested pesticides have mostly demonstrated additive effect in larval bees. The significant antagonistic effects were found in four parings of mixtures including chlorothalonil added to acetamiprid/tau-fluvalinate or acetamiprid/coumaphos/tau-fluvalinate, and tau-fluvalinate added to acetamiprid/chlorothalonil or acetamiprid/coumaphos/chlorothalonil. CONCLUSION: Interactions between combinations of four pesticides showed mostly additive or antagonistic effects in larval bees. Therefore, predicting the larval mortality of pesticides mixtures on the basis of the results of single pesticide may actually overestimate the risk. We suggest that pesticide mixture in pollen be evaluated by adding their toxicity together for complete data on interactions.

Acaricidal Activity of A Newly Synthesized K16776 against Honeybee Mite, Varroa destructor (Acari: Varroidae) (꿀벌응애에 대한 신규화합물 K16776의 살비효과)

  • Oh, Man-Gyun;Ahn, Hee-Geun;Kim, Hyun-Kyung;Yoon, Chang-Mann;Kim, Jin-Ju;Kim, Tae-Joon;Lee, Dong-Guk;Chung, Geun-Hoe;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.192-196
    • /
    • 2008
  • This study examined the acaricidal activity of a new compound, K16776 against honeybee mite, Varroa destructor which is ecto-parasite of Apis mellifera. Acaricidal activity was performed using six acaricides, two Chinese commercial acaricides and one newly synthesized K16776 against V. destructor in the small container and in the bee hive. K16776 and amitraz exhibited 100% acaricidal activity against V. destructor without insecticidal toxicity to A. mellifera in the small container. The other acaricide was not activity. Applied to the bee hives, K16776 showed acaricidal activity as 98.7% ($250{\times}$) and 88.6% ($500{\times}$) and amitraz showed as 100% ($500{\times}$) and 90% ($1,000{\times}$), respectively. Made in China, Cao Suan Sha Man Pian and Wangs showed acaricidal activity as 56.9% and 66.7%, respectively. The result indicates that K16776 can be potentially useful control agent against honeybee mite, V. destructor.

Evaluation of Royal Jelly Productivity and Characteristics in Apis mellifera Inbred Lines (꿀벌 계통별 로얄제리 생산성 평가 및 특성 분석)

  • Kim, Hye-Kyung;Lee, Myeong-Lyeol;Lee, Man-young;Choi, Yong-Soo;Han, Sang Mi;Kang, Ah Rang;Lee, Kyeong Yong
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.155-162
    • /
    • 2017
  • This research was carried out to evaluate the royal jelly production in Apis mellifera through the selection of superior honeybee lines. For the study, two inbred honeybee lines A and C were evaluated for the production of royal jelly by their workers, royal jelly production per colony (g), and the acceptance percentage of grafted larvae (%). The results showed that, the average royal jelly production per colony was highest ($33.7{\pm}7.41g$) in the inbred line C in comparison to other lines and the percentage of larvae acceptance ($87.8{\pm}7.5%$) was also highest in the inbred line C in comparison to other liens. The royal jelly produced by the three honeybee lines was analyzed for their trans-10-hydroxy-2-decenoic acid (10-HDA) content using a column liquid chromatography technique. Chromatographic results showed that the royal jelly produced by the inbred honeybee line C had the maximum amount of 10-HDA. We also observed age-dependent alterations of the major royal jelly proteins (MRJPs), which were differentially expressed in the two inbred lines and the commercial line, using quantitative real time-PCR (qRT-PCR).