• Title/Summary/Keyword: Homology Modeling

Search Result 119, Processing Time 0.026 seconds

Comparative Modeling of Human P-gp NBD2 and Docking and Binding Mode Analysis of 8-Geranyl Chrysin as a P-gp Modulator

  • Gadhe, Changdev G.
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.18-21
    • /
    • 2012
  • The resistance of tumour cells against cytotoxic drug is significant limitation in successful chemotherapeutic treatment of cancer. To date, no crystal structure is available for human P-gp. We developed homology model for human P-gp NBD2 by using coordinates of transporter associated protein (TAP1). Docking study was performed for 8-geranyl-chrysin (Flavonoids) inhibitor in the NBD2 model. Ligand-protein interactions were determined which indicates that the 8-geranyl chrysin shares two overlapping sites in the cytosolic domains of P-gp, the ATP site and a hydrophobic steroid-binding site.

Implications of the simple chemical structure of the odorant molecules interacting with the olfactory receptor 1A1

  • Oh, S. June
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.18.1-18.8
    • /
    • 2021
  • G protein–coupled receptors (GPCRs), including olfactory receptors, account for the largest group of genes in the human genome and occupy a very important position in signaling systems. Although olfactory receptors, which belong to the broader category of GPCRs, play an important role in monitoring the organism's surroundings, their actual three-dimensional structure has not yet been determined. Therefore, the specific details of the molecular interactions between the receptor and the ligand remain unclear. In this report, the interactions between human olfactory receptor 1A1 and its odorant molecules were simulated using computational methods, and we explored how the chemically simple odorant molecules activate the olfactory receptor.

Computational evaluation of interactions between olfactory receptor OR2W1 and its ligands

  • Oh, S. June
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.9.1-9.5
    • /
    • 2021
  • Mammalian olfactory receptors are a family of G protein-coupled receptors (GPCRs) that occupy a large part of the genome. In human genes, olfactory receptors account for more than 40% of all GPCRs. Several types of GPCR structures have been identified, but there is no single olfactory receptor whose structure has been determined experimentally to date. The aim of this study was to model the interactions between an olfactory receptor and its ligands at the molecular level to provide hints on the binding modes between the OR2W1 olfactory receptor and its agonists and inverse agonists. The results demonstrated the modes of ligand binding in a three-dimensional model of OR2W1 and showed a statistically significant difference in binding affinity to the olfactory receptor between agonists and inverse agonists.

Molecular docking study of nuciferine as a tyrosinase inhibitor and its therapeutic potential for hyperpigmentation

  • Veerabhuvaneshwari Veerichetty;Iswaryalakshmi Saravanabavan
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.43.1-43.13
    • /
    • 2023
  • Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favoured over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.

Cloning and Characterization of Zebrafish Microsomal Epoxide Hydrolase Based on Bioinformatics (생물정보학을 이용한 Zebrafish Microsomal Epoxide Hydrolase 클로닝 및 특성연구)

  • Lee Eun-Yeol;Kim Hee-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • A gene encoding for a putative microsomal epoxide hydrolase (mEH) of a zebrafish, Danio rerio, was cloned and characterized. The putative mEH protein of D. rerio exhibited sequence similarity with mammalian mEH and some other bacterial EHs. A structural model for the putative mEH was constructed using homology modeling based on the crystallographic templates, 1 qo7 and 1 ehy. The catalytic triad consisting of $Asp^{233}$, $Glu^{413}$, and $His^{440}$ was identified, and the characteristic features such as two tyrosine residues and oxyanion hole were found to be highly conserved. Based on bioinformatic analysis together with EH activity assay, the putative protein was annotated as mEH of D. rerio. Enantiopure styrene oxide with enantiopurity of 99%ee and yield of 33.5% was obtained from racemic styrene oxide by the enantioselective hydrolysis activity of recombinant mEH of D. rerio for 45 min.

Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2

  • Na, Eun-Jee;Lee, Sook-Young;Kim, Hak Jun;Oem, Jae-Ku
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.12.1-12.11
    • /
    • 2021
  • Background: Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives: The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods: The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results: Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%-67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions: These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.

A Molecular Modeling Study of AAD16034

  • Cho, Hoon;Choi, Cheol-Hee;Yoo, Kyung-Ho;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.307-310
    • /
    • 2008
  • AAD16034 is an alginate lyase from Pseudoalteromonas sp. IAM14594. A very close homologue with known 3D structure exists (marine bacterium Pseudoalteromonas sp. strain no. 272). A three-dimensional structure of AAD16034 was generated based on this template (PDB code: 1J1T) by comparative modeling. The modeled enzyme exhibited a jelly-roll like structure very similar to its template structure. Both enzymes possess the characteristic alginate sequence YFKhG+Y-Q. Since AAD16034 displays enzymatic activity for poly-M alginate, docking of a tri-mannuronate into the modeled structure was performed. Two separate and adjacent binding sites were found. The ligand was accommodated inside each binding site. By considering both binding sites, a plausible binding pose for the poly-M alginate polymer could be deduced. From the modeled docking pose (i.e., the most important factor that attracts alginate polymer into this lyase) the most likely interaction was electrostatic. In accordance with a previous report, the hydroxyl group of Y345 was positioned close to the ${\alpha}$-hydrogen of ${\beta}$-mannuronate, which was suitable to initiate a ${\beta}$-elimination reaction. K347 was also very near to the carboxylatemoiety of the ligand, which might stabilize the dianion intermediate during the ${\beta}$-elimination reaction. This implies that the characteristic alginate sequence is absolutely crucial for the catalysis. These results may be exploited in the design of novel enzymes with desired properties.

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan;Taghdir, Majid;Naderi-Manesh, Hossein;Khajeh, Khosro;Ranjbar, Bijan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.315-324
    • /
    • 2007
  • The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

Homology modeling of the structure of tobacco acetolactate synthase and examination of the model by site-directed mutagenesis

  • Le, Dung Tien;Yoon, Moon-Young;Kim, Young-Tae;Choi, Jung-Do
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.277-287
    • /
    • 2003
  • Acetolactate synthase (ALS, EC 4.1.3.18; also referred to as acetohydroxy acid synthase) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in microorganisms and plants. Recently X-ray structure of yeast ALS was available. Pair-wise alignment of yeast and tobacco ALS sequences revealed 63% sequence similarity. Using Deep View and automatic modeling on Swiss model server, we have generated reliable models of tobacco ALS based on yeast ALS template with a calculated pair-wise RMSD of 0.86 Angstrom. Functional roles of four residues located on the subunit interface (H142, El43, M350, and R376) were examined by site-directed mutagenesis. Seven mutants were generated and purified, of which three mutants (H142T, M350V, and R376F) were found to be inactivated under various assay conditions. The H142k mutant showed moderately altered kinetic properties. The E143A mutant increased 10-fold in K$_m$ value while other parameters remained unchanged. The M350C mutant was strongly resistant to three tested herbicides, while the R376k mutant can bind with herbicide carder at similar affinity to that of wild type enzyme, as determined by tryptophan quenching study. Except M350V mutant, all other mutants were ate to bind with cofactor FAD. Taken together, it is likely that residues H142 and E143 are located at the active site, while residues M350 and R376 are possibly located at the overlapping region of active site and herbicide binding site of the enzyme. Our data also allows us to hypothesize that the interaction between side chains of residues M350 and R376 are probably essential for the correct conformation of the active site. It remains to be elucidated that, whether the herbicide, upon binding with enzyme, inactivates the enzyme by causing change in the active site allosterically, which is unfavorable for catalytic activity.

  • PDF

Theoretical Investigations on Structure and Function of Human Homologue hABH4 of E.coli ALKB4

  • Shankaracharya, Shankaracharya;Das, Saibal;Prasad, Dinesh;Vidyarthi, Ambarish Sharan
    • Interdisciplinary Bio Central
    • /
    • v.2 no.3
    • /
    • pp.8.1-8.5
    • /
    • 2010
  • Introduction: Recently identified human homologues of ALKB protein have shown the activity of DNA damaging drugs, used for cancer therapy. Bioinformatics study of hABH2 and hABH3 had led to the discovery of a novel DNA repair mechanism. Very little is known about structure and function of hABH4, one of the members of this superfamily. Therefore, in present study we are intended to predict its structure and function through various bioinformatics tools. Materials and Methods: Modeling was done with modeler 9v7 to predict the 3D structure of the hABH4 protein. This model was validated with the program Procheck using Ramachandran plot statistics and was submitted to PMDB with ID PM0076284. The 3d2GO server was used to predict the functions. Residues at protein ligand and protein RNA binding sites were predicted with 3dLigandSite and KYG programs respectively. Results and Discussion: 3-D model of hABH4, ALKBH4.B99990003.pdb was predicted and evaluated. Validation result showed that 96.4 % residues lies in favored and additional allowed region of Ramachandran plot. Ligand binding residues prediction showed four Ligand clusters, having 24 ligands in cluster 1. Importantly, conserved pattern of Glu196-X-Pro198- Xn-His254 in the functional domain was detected. DNA and RNA binding sites were also predicted in the model. Conclusion and Prospects: The predicted and validated model of human homologue hABH4 resulted from this study may unveil the mechanism of DNA damage repair in human and accelerate the research on designing of appropriate inhibitors aiding in chemotherapy and cancer related diseases.